Surface and borehole gravity data contain complementary information.Thus,the joint inversion of these two data types can help retrieve the real spatial distributions of density bodies.When a sharp boundary exists betw...Surface and borehole gravity data contain complementary information.Thus,the joint inversion of these two data types can help retrieve the real spatial distributions of density bodies.When a sharp boundary exists between an anomalous density body and its surrounding rock,the interface recovered by smooth inversion with Tikhonov regularization is not clear,leading to difficulties in the subsequent geological interpretation.In this work,we develop a joint inversion of surface and borehole gravity data using zeroth-order minimum entropy regularization.The method takes advantage of the complementary information from surface and borehole gravity data to enhance the imaging resolution of density bodies.It also produces a focused imaging of bodies through the zeroth-order minimum entropy regularization without requiring a preselection of a proper focusing parameter.We apply the developed joint inversion approach to three diff erent synthetic data sets.Inversion results show that the focusing inversion with the zeroth-order minimum entropy regularization provides a good description of the true spatial extent of anomalous density bodies.Meanwhile,the joint focusing inversion reconstructs a more reliable density model with a relatively high resolution when a density body is passed through by one or more boreholes.展开更多
In this paper, wavelet transform and entropy are evaluated using the mathematical analysis concepts of reflexibility, regularity and series obtention, these concepts remark the reason to make a selective reference fra...In this paper, wavelet transform and entropy are evaluated using the mathematical analysis concepts of reflexibility, regularity and series obtention, these concepts remark the reason to make a selective reference framework for power quality applications. With this idea the paper used the same treatment for the two algorithms (Multiresolution and Multiscale Entropy). The wavelet is denoted to have the most power full consistence to the light off the reflexibility, regularity and series obtention. The paper proposes a power quality technique namely MpqAT.展开更多
The event-related desynchronization/synchronization(ERD/ERS) time courses of lower and upper alpha band rhythms during hand motor imagery are investigated respectively by Fourier Sectral Entropy (FSE) in this paper. B...The event-related desynchronization/synchronization(ERD/ERS) time courses of lower and upper alpha band rhythms during hand motor imagery are investigated respectively by Fourier Sectral Entropy (FSE) in this paper. By analyzing one group of BCI competition data, it was found that FSE within upper alpha band displays a pronounced increase and decrease over contralateral and ipsilateral brain areas respectively at the onset of hand motor imagery, which is corresponding to the antagonistic ERD/ERS patterns in previous studies. Different from the upper alpha activity pattern, FSE within lower alpha band displays a consistent increase over both two hemispheres hand representative areas. The preliminary results show that FSE could disclose the different behaviors of the upper and lower alpha band rhythms so that a new idea with the complexity measure is provided to characterize functional dissociation of lower and upper frequency alpha rhythms in relation to hand motor imagery.展开更多
Approximate entropy(ApEn),a measure quantifying complexity and/or regularity,is believed to be an effective method of analyzing diverse settings.However,the similarity definition of vectors based on Heaviside function...Approximate entropy(ApEn),a measure quantifying complexity and/or regularity,is believed to be an effective method of analyzing diverse settings.However,the similarity definition of vectors based on Heaviside function may cause some problems in the validity and accuracy of ApEn.To overcome the problems,an improved approximate entropy(iApEn)based on the sigmoid function is proposed.The performance of iApEn is tested on the independent identically distributed(IID)Gaussian noise,the MIX stochastic model,the Rossler map,the logistic map,and the high-dimensional Mackey–Glass oscillator.The results show that iApEn is superior to ApEn in several aspects,including better relative consistency,freedom of parameter selection,robust to noise,and more independence on record length when characterizing time series with different complexities.展开更多
In this paper, we consider a fuzzy c-means (FCM) clustering algorithm combined with the deterministic annealing method and the Tsallis entropy maximization. The Tsallis entropy is a q-parameter extension of the Shanno...In this paper, we consider a fuzzy c-means (FCM) clustering algorithm combined with the deterministic annealing method and the Tsallis entropy maximization. The Tsallis entropy is a q-parameter extension of the Shannon entropy. By maximizing the Tsallis entropy within the framework of FCM, membership functions similar to statistical mechanical distribution functions can be derived. One of the major considerations when using this method is how to determine appropriate q values and the highest annealing temperature, Thigh?, for a given data set. Accordingly, in this paper, a method for determining these values simultaneously without introducing any additional parameters is presented. In our approach, the membership function is approximated by a series of expansion methods and the K-means clustering algorithm is utilized as a preprocessing step to estimate a radius of each data distribution. The results of experiments indicate that the proposed method is effective and both q and Thigh can be determined automatically and algebraically from a given data set.展开更多
The work illustrates the impossibility of decreasing entropy in a strictly random thermodynamic process in a non-isolated system using the example of heating a planet by solar radiation flux without and taking into ac...The work illustrates the impossibility of decreasing entropy in a strictly random thermodynamic process in a non-isolated system using the example of heating a planet by solar radiation flux without and taking into account its rotation around its own axis. That is, the second law of thermodynamics formulated for isolated systems continues to govern such systems. We have shown that in order to achieve a stationary state at lower values of temperature and entropy far from thermodynamic equilibrium at a maximum of temperature and entropy, it is necessary to have regular factors of nonrandom nature, one of which in this example is the rotation of the planet around its own axis. This means that the reason for the appearance of ordered structured objects in non-isolated thermodynamic systems is not the random process itself, but the action of dynamic control mechanisms, such as periodic external influences, nonlinear elements with positive feedback, catalysts for chemical reactions, etc. We present the plots with dependences of temperature and entropy versus time in non-isolated systems with purely random processes and in the presence of a control factor of non-random nature-rotation.展开更多
We calculate the entropy of spherically symmetric regular black holes by the path-integral method in Einstein's gravity. This method provides evidence that the entropy of spherically symmetric regular black holes ...We calculate the entropy of spherically symmetric regular black holes by the path-integral method in Einstein's gravity. This method provides evidence that the entropy of spherically symmetric regular black holes is proportional to a quarter of horizon area, indicating no violation of the entropy-area law.展开更多
Plug-in Hybrid Electric Vehicles(PHEVs)represent an innovative breed of transportation,harnessing diverse power sources for enhanced performance.Energy management strategies(EMSs)that coordinate and control different ...Plug-in Hybrid Electric Vehicles(PHEVs)represent an innovative breed of transportation,harnessing diverse power sources for enhanced performance.Energy management strategies(EMSs)that coordinate and control different energy sources is a critical component of PHEV control technology,directly impacting overall vehicle performance.This study proposes an improved deep reinforcement learning(DRL)-based EMSthat optimizes realtime energy allocation and coordinates the operation of multiple power sources.Conventional DRL algorithms struggle to effectively explore all possible state-action combinations within high-dimensional state and action spaces.They often fail to strike an optimal balance between exploration and exploitation,and their assumption of a static environment limits their ability to adapt to changing conditions.Moreover,these algorithms suffer from low sample efficiency.Collectively,these factors contribute to convergence difficulties,low learning efficiency,and instability.To address these challenges,the Deep Deterministic Policy Gradient(DDPG)algorithm is enhanced using entropy regularization and a summation tree-based Prioritized Experience Replay(PER)method,aiming to improve exploration performance and learning efficiency from experience samples.Additionally,the correspondingMarkovDecision Process(MDP)is established.Finally,an EMSbased on the improvedDRLmodel is presented.Comparative simulation experiments are conducted against rule-based,optimization-based,andDRL-based EMSs.The proposed strategy exhibitsminimal deviation fromthe optimal solution obtained by the dynamic programming(DP)strategy that requires global information.In the typical driving scenarios based onWorld Light Vehicle Test Cycle(WLTC)and New European Driving Cycle(NEDC),the proposed method achieved a fuel consumption of 2698.65 g and an Equivalent Fuel Consumption(EFC)of 2696.77 g.Compared to the DP strategy baseline,the proposed method improved the fuel efficiency variances(FEV)by 18.13%,15.1%,and 8.37%over the Deep QNetwork(DQN),Double DRL(DDRL),and original DDPG methods,respectively.The observational outcomes demonstrate that the proposed EMS based on improved DRL framework possesses good real-time performance,stability,and reliability,effectively optimizing vehicle economy and fuel consumption.展开更多
随着网络技术的不断发展,基于Fat-Tree的网络拓扑结构分布式网络控制模式逐渐显露出其局限性,软件定义数据中心网络(software-defined data center network,SDCN)技术作为Fat-Tree网络拓扑的改进技术,受到越来越多研究者的关注。首先搭...随着网络技术的不断发展,基于Fat-Tree的网络拓扑结构分布式网络控制模式逐渐显露出其局限性,软件定义数据中心网络(software-defined data center network,SDCN)技术作为Fat-Tree网络拓扑的改进技术,受到越来越多研究者的关注。首先搭建了一个SDCN中的边缘计算架构和基于移动边缘计算(mobileedge computing,MEC)平台三层服务架构的任务卸载模型,结合移动边缘计算平台的实际应用场景,利用同策略经验回放和熵正则改进传统的深度Q网络(deep Q-leaning network,DQN)算法,优化了MEC平台的任务卸载策略,并设计了实验对基于同策略经验回放和熵正则的改进深度Q网络算法(improved DQN algorithm based on same strategy empirical playback and entropy regularization,RSS2E-DQN)和其他3种算法在负载均衡、能耗、时延、网络使用量几个方面进行对比分析,验证了改进算法在上述4个方面具有更优越的性能。展开更多
Approximate entropy (ApEn), a measure quantifying regularity and complexity, is believed to be an effective analyzing method of diverse settings that include both deterministic chaotic and stochastic processes, partic...Approximate entropy (ApEn), a measure quantifying regularity and complexity, is believed to be an effective analyzing method of diverse settings that include both deterministic chaotic and stochastic processes, particularly operative in the analysis of physiological signals that involve relatively small amount of data. However, the similarity definition of vectors based on Heaviside function, of which the boundary is discontinuous and hard, may cause some problems in the validity and accuracy of ApEn. To overcome these problems, a modified ApEn based on fuzzy similarity (mApEn) was proposed. The performance on the MIX stochastic model, as well as those on the Logistic map and the Hennon map with noise, shows that the fuzzy similarity-based ApEn gets more satisfying results than the standard ApEn when characterizing systems with different regularities.展开更多
基金financially supported by the National Key Research and Development Program of China(no.2018YFC0603300)the National Natural Science Foundation of China(no.42004054)。
文摘Surface and borehole gravity data contain complementary information.Thus,the joint inversion of these two data types can help retrieve the real spatial distributions of density bodies.When a sharp boundary exists between an anomalous density body and its surrounding rock,the interface recovered by smooth inversion with Tikhonov regularization is not clear,leading to difficulties in the subsequent geological interpretation.In this work,we develop a joint inversion of surface and borehole gravity data using zeroth-order minimum entropy regularization.The method takes advantage of the complementary information from surface and borehole gravity data to enhance the imaging resolution of density bodies.It also produces a focused imaging of bodies through the zeroth-order minimum entropy regularization without requiring a preselection of a proper focusing parameter.We apply the developed joint inversion approach to three diff erent synthetic data sets.Inversion results show that the focusing inversion with the zeroth-order minimum entropy regularization provides a good description of the true spatial extent of anomalous density bodies.Meanwhile,the joint focusing inversion reconstructs a more reliable density model with a relatively high resolution when a density body is passed through by one or more boreholes.
文摘In this paper, wavelet transform and entropy are evaluated using the mathematical analysis concepts of reflexibility, regularity and series obtention, these concepts remark the reason to make a selective reference framework for power quality applications. With this idea the paper used the same treatment for the two algorithms (Multiresolution and Multiscale Entropy). The wavelet is denoted to have the most power full consistence to the light off the reflexibility, regularity and series obtention. The paper proposes a power quality technique namely MpqAT.
基金National Natural Science Foundation of China (No.30370395and30670534)Chinese Post-doctoral Science Foundation (No.20070410380)
文摘The event-related desynchronization/synchronization(ERD/ERS) time courses of lower and upper alpha band rhythms during hand motor imagery are investigated respectively by Fourier Sectral Entropy (FSE) in this paper. By analyzing one group of BCI competition data, it was found that FSE within upper alpha band displays a pronounced increase and decrease over contralateral and ipsilateral brain areas respectively at the onset of hand motor imagery, which is corresponding to the antagonistic ERD/ERS patterns in previous studies. Different from the upper alpha activity pattern, FSE within lower alpha band displays a consistent increase over both two hemispheres hand representative areas. The preliminary results show that FSE could disclose the different behaviors of the upper and lower alpha band rhythms so that a new idea with the complexity measure is provided to characterize functional dissociation of lower and upper frequency alpha rhythms in relation to hand motor imagery.
基金by the National Defence Project(J092009A002),Jiangsu-Provincial Natural Science Foundation(BK2009198)the Priority Academic Program Development of Jiangsu Higher Education Institutions.
文摘Approximate entropy(ApEn),a measure quantifying complexity and/or regularity,is believed to be an effective method of analyzing diverse settings.However,the similarity definition of vectors based on Heaviside function may cause some problems in the validity and accuracy of ApEn.To overcome the problems,an improved approximate entropy(iApEn)based on the sigmoid function is proposed.The performance of iApEn is tested on the independent identically distributed(IID)Gaussian noise,the MIX stochastic model,the Rossler map,the logistic map,and the high-dimensional Mackey–Glass oscillator.The results show that iApEn is superior to ApEn in several aspects,including better relative consistency,freedom of parameter selection,robust to noise,and more independence on record length when characterizing time series with different complexities.
文摘In this paper, we consider a fuzzy c-means (FCM) clustering algorithm combined with the deterministic annealing method and the Tsallis entropy maximization. The Tsallis entropy is a q-parameter extension of the Shannon entropy. By maximizing the Tsallis entropy within the framework of FCM, membership functions similar to statistical mechanical distribution functions can be derived. One of the major considerations when using this method is how to determine appropriate q values and the highest annealing temperature, Thigh?, for a given data set. Accordingly, in this paper, a method for determining these values simultaneously without introducing any additional parameters is presented. In our approach, the membership function is approximated by a series of expansion methods and the K-means clustering algorithm is utilized as a preprocessing step to estimate a radius of each data distribution. The results of experiments indicate that the proposed method is effective and both q and Thigh can be determined automatically and algebraically from a given data set.
文摘The work illustrates the impossibility of decreasing entropy in a strictly random thermodynamic process in a non-isolated system using the example of heating a planet by solar radiation flux without and taking into account its rotation around its own axis. That is, the second law of thermodynamics formulated for isolated systems continues to govern such systems. We have shown that in order to achieve a stationary state at lower values of temperature and entropy far from thermodynamic equilibrium at a maximum of temperature and entropy, it is necessary to have regular factors of nonrandom nature, one of which in this example is the rotation of the planet around its own axis. This means that the reason for the appearance of ordered structured objects in non-isolated thermodynamic systems is not the random process itself, but the action of dynamic control mechanisms, such as periodic external influences, nonlinear elements with positive feedback, catalysts for chemical reactions, etc. We present the plots with dependences of temperature and entropy versus time in non-isolated systems with purely random processes and in the presence of a control factor of non-random nature-rotation.
基金supported by the National Natural Science Foundation of China (Grant No. 12175108)。
文摘We calculate the entropy of spherically symmetric regular black holes by the path-integral method in Einstein's gravity. This method provides evidence that the entropy of spherically symmetric regular black holes is proportional to a quarter of horizon area, indicating no violation of the entropy-area law.
文摘Plug-in Hybrid Electric Vehicles(PHEVs)represent an innovative breed of transportation,harnessing diverse power sources for enhanced performance.Energy management strategies(EMSs)that coordinate and control different energy sources is a critical component of PHEV control technology,directly impacting overall vehicle performance.This study proposes an improved deep reinforcement learning(DRL)-based EMSthat optimizes realtime energy allocation and coordinates the operation of multiple power sources.Conventional DRL algorithms struggle to effectively explore all possible state-action combinations within high-dimensional state and action spaces.They often fail to strike an optimal balance between exploration and exploitation,and their assumption of a static environment limits their ability to adapt to changing conditions.Moreover,these algorithms suffer from low sample efficiency.Collectively,these factors contribute to convergence difficulties,low learning efficiency,and instability.To address these challenges,the Deep Deterministic Policy Gradient(DDPG)algorithm is enhanced using entropy regularization and a summation tree-based Prioritized Experience Replay(PER)method,aiming to improve exploration performance and learning efficiency from experience samples.Additionally,the correspondingMarkovDecision Process(MDP)is established.Finally,an EMSbased on the improvedDRLmodel is presented.Comparative simulation experiments are conducted against rule-based,optimization-based,andDRL-based EMSs.The proposed strategy exhibitsminimal deviation fromthe optimal solution obtained by the dynamic programming(DP)strategy that requires global information.In the typical driving scenarios based onWorld Light Vehicle Test Cycle(WLTC)and New European Driving Cycle(NEDC),the proposed method achieved a fuel consumption of 2698.65 g and an Equivalent Fuel Consumption(EFC)of 2696.77 g.Compared to the DP strategy baseline,the proposed method improved the fuel efficiency variances(FEV)by 18.13%,15.1%,and 8.37%over the Deep QNetwork(DQN),Double DRL(DDRL),and original DDPG methods,respectively.The observational outcomes demonstrate that the proposed EMS based on improved DRL framework possesses good real-time performance,stability,and reliability,effectively optimizing vehicle economy and fuel consumption.
基金Supported by the National Natural Science Foundation of China (10871157)Specialized Research Fund for the Doctoral Program of Higher Education (200806990032)
文摘随着网络技术的不断发展,基于Fat-Tree的网络拓扑结构分布式网络控制模式逐渐显露出其局限性,软件定义数据中心网络(software-defined data center network,SDCN)技术作为Fat-Tree网络拓扑的改进技术,受到越来越多研究者的关注。首先搭建了一个SDCN中的边缘计算架构和基于移动边缘计算(mobileedge computing,MEC)平台三层服务架构的任务卸载模型,结合移动边缘计算平台的实际应用场景,利用同策略经验回放和熵正则改进传统的深度Q网络(deep Q-leaning network,DQN)算法,优化了MEC平台的任务卸载策略,并设计了实验对基于同策略经验回放和熵正则的改进深度Q网络算法(improved DQN algorithm based on same strategy empirical playback and entropy regularization,RSS2E-DQN)和其他3种算法在负载均衡、能耗、时延、网络使用量几个方面进行对比分析,验证了改进算法在上述4个方面具有更优越的性能。
基金The National Basic Research Program (973)of China (No 2005CB724303)
文摘Approximate entropy (ApEn), a measure quantifying regularity and complexity, is believed to be an effective analyzing method of diverse settings that include both deterministic chaotic and stochastic processes, particularly operative in the analysis of physiological signals that involve relatively small amount of data. However, the similarity definition of vectors based on Heaviside function, of which the boundary is discontinuous and hard, may cause some problems in the validity and accuracy of ApEn. To overcome these problems, a modified ApEn based on fuzzy similarity (mApEn) was proposed. The performance on the MIX stochastic model, as well as those on the Logistic map and the Hennon map with noise, shows that the fuzzy similarity-based ApEn gets more satisfying results than the standard ApEn when characterizing systems with different regularities.