期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
High-Order Accurate Entropy Stable Finite Difference Schemes for One- and Two-Dimensional Special Relativistic Hydrodynamics 被引量:8
1
作者 Junming Duan Huazhong Tang 《Advances in Applied Mathematics and Mechanics》 SCIE 2020年第1期1-29,共29页
This paper develops the high-order accurate entropy stable finite difference schemes for one-and two-dimensional special relativistic hydrodynamic equations.The schemes are built on the entropy conservative flux and t... This paper develops the high-order accurate entropy stable finite difference schemes for one-and two-dimensional special relativistic hydrodynamic equations.The schemes are built on the entropy conservative flux and the weighted essentially non-oscillatory(WENO)technique as well as explicit Runge-Kutta time discretization.The key is to technically construct the affordable entropy conservative flux of the semi-discrete second-order accurate entropy conservative schemes satisfying the semi-discrete entropy equality for the found convex entropy pair.As soon as the entropy conservative flux is derived,the dissipation term can be added to give the semidiscrete entropy stable schemes satisfying the semi-discrete entropy inequality with the given convex entropy function.The WENO reconstruction for the scaled entropy variables and the high-order explicit Runge-Kutta time discretization are implemented to obtain the fully-discrete high-order entropy stable schemes.Several numerical tests are conducted to validate the accuracy and the ability to capture discontinuities of our entropy stable schemes. 展开更多
关键词 entropy conservative scheme entropy stable scheme high order accuracy finite difference scheme special relativistic hydrodynamics
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部