Predicting the usage of container cloud resources has always been an important and challenging problem in improving the performance of cloud resource clusters.We proposed an integrated prediction method of stacking co...Predicting the usage of container cloud resources has always been an important and challenging problem in improving the performance of cloud resource clusters.We proposed an integrated prediction method of stacking container cloud resources based on variational modal decomposition(VMD)-Permutation entropy(PE)and long short-term memory(LSTM)neural network to solve the prediction difficulties caused by the non-stationarity and volatility of resource data.The variational modal decomposition algorithm decomposes the time series data of cloud resources to obtain intrinsic mode function and residual components,which solves the signal decomposition algorithm’s end-effect and modal confusion problems.The permutation entropy is used to evaluate the complexity of the intrinsic mode function,and the reconstruction based on similar entropy and low complexity is used to reduce the difficulty of modeling.Finally,we use the LSTM and stacking fusion models to predict and superimpose;the stacking integration model integrates Gradient boosting regression(GBR),Kernel ridge regression(KRR),and Elastic net regression(ENet)as primary learners,and the secondary learner adopts the kernel ridge regression method with solid generalization ability.The Amazon public data set experiment shows that compared with Holt-winters,LSTM,and Neuralprophet models,we can see that the optimization range of multiple evaluation indicators is 0.338∼1.913,0.057∼0.940,0.000∼0.017 and 1.038∼8.481 in root means square error(RMSE),mean absolute error(MAE),mean absolute percentage error(MAPE)and variance(VAR),showing its stability and better prediction accuracy.展开更多
The method of cloud model with entropy weight was adopted for the prediction of rock burst classification. Some main factors of rock burst including the uniaxial compressive strength (σc), the tensile strength (σ...The method of cloud model with entropy weight was adopted for the prediction of rock burst classification. Some main factors of rock burst including the uniaxial compressive strength (σc), the tensile strength (σt), the tangential stress (σθ), the rock brittleness coefficient (σc/σt), the stress coefficient (σθ /σc) and the elastic energy index (Wet) are chosen to establish evaluation index system. The entropy?cloud model and criterion are obtained through 209 sets of rock burst samples from underground rock projects. The sensitivity of indicators is analyzed and 209 sets of rock burst samples are discriminated by this model. The discriminant results of the entropy-cloud model are compared with those of Bayes, KNN and RF methods. The results show that the sensitivity order of those factors from high to low is σ_θ /σ_c, σ_θ, W_(ct), σ_c/σ_t, σ_t, σ_c, and the entropy-cloud model has higher accuracy than Bayes, K-Nearest Neighbor algorithm (KNN) and Random Forest (RF) methods.展开更多
To resolve the problem of quantitative analysis in hybrid cloud,a quantitative analysis method,which is based on the security entropy,is proposed.Firstly,according to the information theory,the security entropy is put...To resolve the problem of quantitative analysis in hybrid cloud,a quantitative analysis method,which is based on the security entropy,is proposed.Firstly,according to the information theory,the security entropy is put forward to calculate the uncertainty of the system' s determinations on the irregular access behaviors.Secondly,based on the security entropy,security theorems of hybrid cloud are defined.Finally,typical access control models are analyzed by the method,the method's practicability is validated,and security and applicability of these models are compared.Simulation results prove that the proposed method is suitable for the security quantitative analysis of the access control model and evaluation to access control capability in hybrid cloud.展开更多
Objective and accurate classification model or method of cloud image is a prerequisite for accurate weather monitoring and forecast.Thus safety of aircraft taking off and landing and air flight can be guaranteed.Thres...Objective and accurate classification model or method of cloud image is a prerequisite for accurate weather monitoring and forecast.Thus safety of aircraft taking off and landing and air flight can be guaranteed.Thresholding is a kind of simple and effective method of cloud classification.It can realize automated ground-based cloud detection and cloudage observation.The existing segmentation methods based on fixed threshold and single threshold cannot achieve good segmentation effect.Thus it is difficult to obtain the accurate result of cloud detection and cloudage observation.In view of the above-mentioned problems,multi-thresholding methods of ground-based cloud based on exponential entropy/exponential gray entropy and uniform searching particle swarm optimization(UPSO)are proposed.Exponential entropy and exponential gray entropy make up for the defects of undefined value and zero value in Shannon entropy.In addition,exponential gray entropy reflects the relative uniformity of gray levels within the cloud cluster and background cluster.Cloud regions and background regions of different gray level ranges can be distinguished more precisely using the multi-thresholding strategy.In order to reduce computational complexity of original exhaustive algorithm for multi-threshold selection,the UPSO algorithm is adopted.It can find the optimal thresholds quickly and accurately.As a result,the real-time processing of segmentation of groundbased cloud image can be realized.The experimental results show that,in comparison with the existing groundbased cloud image segmentation methods and multi-thresholding method based on maximum Shannon entropy,the proposed methods can extract the boundary shape,textures and details feature of cloud more clearly.Therefore,the accuracies of cloudage detection and morphology classification for ground-based cloud are both improved.展开更多
综合能源系统(integrated energy system,IES)作为能源转型中的重要环节已得到越来越多国家的广泛关注。构建一套匹配中国国情的综合能源系统评价体系和评价方法不仅能够为综合能源系统规划后评价打下基础,以此对规划方案进行优劣排序;...综合能源系统(integrated energy system,IES)作为能源转型中的重要环节已得到越来越多国家的广泛关注。构建一套匹配中国国情的综合能源系统评价体系和评价方法不仅能够为综合能源系统规划后评价打下基础,以此对规划方案进行优劣排序;还能够提高综合能源系统项目的管理水平,在制定统一、完整的综合能源系统综合评价标准时提供参考。为此,首先结合园区IES基本特征以及运行特性,构建包含经济性、可靠性、环保性以及智能友好性4个方面的综合评价指标体系;然后为解决IES在运行中的不确定性问题,对基于传统云物元模型的综合评价体系提出云熵优化,即考虑不同评价者对模糊性的可接受程度;为解决单一赋权方法可能导致的评价结果过于主观或过于客观的问题,选择基于最小鉴别信息原理将决策实验室法与熵权法相结合的综合赋权法,并采用变权法进一步完善综合评价指标;最后通过算例分析,验证所提综合评价体系的科学正确性。展开更多
基金The National Natural Science Foundation of China (No.62262011)The Natural Science Foundation of Guangxi (No.2021JJA170130).
文摘Predicting the usage of container cloud resources has always been an important and challenging problem in improving the performance of cloud resource clusters.We proposed an integrated prediction method of stacking container cloud resources based on variational modal decomposition(VMD)-Permutation entropy(PE)and long short-term memory(LSTM)neural network to solve the prediction difficulties caused by the non-stationarity and volatility of resource data.The variational modal decomposition algorithm decomposes the time series data of cloud resources to obtain intrinsic mode function and residual components,which solves the signal decomposition algorithm’s end-effect and modal confusion problems.The permutation entropy is used to evaluate the complexity of the intrinsic mode function,and the reconstruction based on similar entropy and low complexity is used to reduce the difficulty of modeling.Finally,we use the LSTM and stacking fusion models to predict and superimpose;the stacking integration model integrates Gradient boosting regression(GBR),Kernel ridge regression(KRR),and Elastic net regression(ENet)as primary learners,and the secondary learner adopts the kernel ridge regression method with solid generalization ability.The Amazon public data set experiment shows that compared with Holt-winters,LSTM,and Neuralprophet models,we can see that the optimization range of multiple evaluation indicators is 0.338∼1.913,0.057∼0.940,0.000∼0.017 and 1.038∼8.481 in root means square error(RMSE),mean absolute error(MAE),mean absolute percentage error(MAPE)and variance(VAR),showing its stability and better prediction accuracy.
基金Projects(51474252,51274253)supported by the National Natural Science Foundation of ChinaProject(2015CX005)supported by the Innovation Driven Plan of Central South University,ChinaProject(2016zzts095)supported by the Fundamental Research Funds for the Central Universities,China
文摘The method of cloud model with entropy weight was adopted for the prediction of rock burst classification. Some main factors of rock burst including the uniaxial compressive strength (σc), the tensile strength (σt), the tangential stress (σθ), the rock brittleness coefficient (σc/σt), the stress coefficient (σθ /σc) and the elastic energy index (Wet) are chosen to establish evaluation index system. The entropy?cloud model and criterion are obtained through 209 sets of rock burst samples from underground rock projects. The sensitivity of indicators is analyzed and 209 sets of rock burst samples are discriminated by this model. The discriminant results of the entropy-cloud model are compared with those of Bayes, KNN and RF methods. The results show that the sensitivity order of those factors from high to low is σ_θ /σ_c, σ_θ, W_(ct), σ_c/σ_t, σ_t, σ_c, and the entropy-cloud model has higher accuracy than Bayes, K-Nearest Neighbor algorithm (KNN) and Random Forest (RF) methods.
基金Supported by the National Natural Science Foundation of China(No.60872041,61072066)Fundamental Research Funds for the Central Universities(JYI0000903001,JYI0000901034)
文摘To resolve the problem of quantitative analysis in hybrid cloud,a quantitative analysis method,which is based on the security entropy,is proposed.Firstly,according to the information theory,the security entropy is put forward to calculate the uncertainty of the system' s determinations on the irregular access behaviors.Secondly,based on the security entropy,security theorems of hybrid cloud are defined.Finally,typical access control models are analyzed by the method,the method's practicability is validated,and security and applicability of these models are compared.Simulation results prove that the proposed method is suitable for the security quantitative analysis of the access control model and evaluation to access control capability in hybrid cloud.
基金Supported by the National Natural Science Foundation of China(60872065)the Open Foundation of Key Laboratory of Meteorological Disaster of Ministry of Education at Nanjing University of Information Science & Technology(KLME1108)the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘Objective and accurate classification model or method of cloud image is a prerequisite for accurate weather monitoring and forecast.Thus safety of aircraft taking off and landing and air flight can be guaranteed.Thresholding is a kind of simple and effective method of cloud classification.It can realize automated ground-based cloud detection and cloudage observation.The existing segmentation methods based on fixed threshold and single threshold cannot achieve good segmentation effect.Thus it is difficult to obtain the accurate result of cloud detection and cloudage observation.In view of the above-mentioned problems,multi-thresholding methods of ground-based cloud based on exponential entropy/exponential gray entropy and uniform searching particle swarm optimization(UPSO)are proposed.Exponential entropy and exponential gray entropy make up for the defects of undefined value and zero value in Shannon entropy.In addition,exponential gray entropy reflects the relative uniformity of gray levels within the cloud cluster and background cluster.Cloud regions and background regions of different gray level ranges can be distinguished more precisely using the multi-thresholding strategy.In order to reduce computational complexity of original exhaustive algorithm for multi-threshold selection,the UPSO algorithm is adopted.It can find the optimal thresholds quickly and accurately.As a result,the real-time processing of segmentation of groundbased cloud image can be realized.The experimental results show that,in comparison with the existing groundbased cloud image segmentation methods and multi-thresholding method based on maximum Shannon entropy,the proposed methods can extract the boundary shape,textures and details feature of cloud more clearly.Therefore,the accuracies of cloudage detection and morphology classification for ground-based cloud are both improved.
文摘综合能源系统(integrated energy system,IES)作为能源转型中的重要环节已得到越来越多国家的广泛关注。构建一套匹配中国国情的综合能源系统评价体系和评价方法不仅能够为综合能源系统规划后评价打下基础,以此对规划方案进行优劣排序;还能够提高综合能源系统项目的管理水平,在制定统一、完整的综合能源系统综合评价标准时提供参考。为此,首先结合园区IES基本特征以及运行特性,构建包含经济性、可靠性、环保性以及智能友好性4个方面的综合评价指标体系;然后为解决IES在运行中的不确定性问题,对基于传统云物元模型的综合评价体系提出云熵优化,即考虑不同评价者对模糊性的可接受程度;为解决单一赋权方法可能导致的评价结果过于主观或过于客观的问题,选择基于最小鉴别信息原理将决策实验室法与熵权法相结合的综合赋权法,并采用变权法进一步完善综合评价指标;最后通过算例分析,验证所提综合评价体系的科学正确性。