The purpose of this paper is to introduce to you, the Western people, nowadays a “widely unknown” Japanese thermodynamicist by the name of Motoyosi Sugita and his study on the thermodynamics of transient phenomena a...The purpose of this paper is to introduce to you, the Western people, nowadays a “widely unknown” Japanese thermodynamicist by the name of Motoyosi Sugita and his study on the thermodynamics of transient phenomena and his theory of life. This is because although he was one of the top theoretical physicists in Japan before, during and after WWII and after WWII he promoted the establishment of the biophysical society of Japan as one of the founding members, he himself and his studies themselves have seemed to be totally forgotten nowadays in spite that his study was absolutely important for the study of life. Therefore, in this paper I would like to present what kind of person he was and what he studied in physics as a review on the physics work of Motoyosi Sugita for the first time. I will follow his past studies to introduce his ideas in theoretical physics as well as in biophysics as follows: He proposed the bright ideas such as the quasi-static change in the broad sense, the virtual heat, and the field of chemical potential etc. in order to establish his own theory of thermodynamics of transient phenomena, as the generalization of the Onsager-Prigogine’s theory of the irreversible processes. By the concept of the field of chemical potential that acquired the nonlinear transport, he was seemingly successful to exceed and go beyond the scope of Onsager and Prigogine. Once he established his thermodynamics, he explored the existence of the 4th law of thermodynamics for the foundation of theory of life. He applied it to broad categories of transient phenomena including life and life being such as the theory of metabolism. He regarded the 4th law of thermodynamics as the maximum principle in transient phenomena. He tried to prove it all life long. Since I have recently found that his maximum principle can be included in more general maximum principle, which was known as the Pontryagin’s maximum principle in the theory of optimal control, I would like to explain such theories produced by Motoyosi Sugita as detailed as possible. And also I have put short history of Motoyosi Sugita’s personal life in order for you to know him well. I hope that this article helps you to know this wonderful man and understand what he did in the past, which was totally forgotten in the world and even in Japan.展开更多
This study is concerned with describing the thermodynamic equilibrium of the saturated fluid with and without a free surface area A. Discussion of the role of A as system variable of the interface phase and an estimat...This study is concerned with describing the thermodynamic equilibrium of the saturated fluid with and without a free surface area A. Discussion of the role of A as system variable of the interface phase and an estimate of the ratio of the respective free energies of systems with and without A show that the system variables given by Gibbs suffice to describe the volumetric properties of the fluid. The well-known Gibbsian expressions for the internal energies of the two-phase fluid, namely for the vapor and for the condensate (liquid or solid), only differ with respect to the phase-specific volumes and . The saturation temperature T, vapor presssure p, and chemical potential are intensive parameters, each of which has the same value everywhere within the fluid, and hence are phase-independent quantities. If one succeeds in representing as a function of and , then the internal energies can also be described by expressions that only differ from one another with respect to their dependence on and . Here it is shown that can be uniquely expressed by the volume function . Therefore, the internal energies can be represented explicitly as functions of the vapor pressure and volumes of the saturated vapor and condensate and are absolutely determined. The hitherto existing problem of applied thermodynamics, calculating the internal energy from the measurable quantities T, p, , and , is thus solved. The same method applies to the calculation of the entropy, chemical potential, and heat capacity.展开更多
Two-phase fluid properties such as entropy, internal energy, and heat capacity are given by thermodynamically defined fit functions. Each fit function is expressed as a temperature function in terms of a power series ...Two-phase fluid properties such as entropy, internal energy, and heat capacity are given by thermodynamically defined fit functions. Each fit function is expressed as a temperature function in terms of a power series expansion about the critical point. The leading term with the critical exponent dominates the temperature variation between the critical and triple points. With β being introduced as the critical exponent for the difference between liquid and vapor densities, it is shown that the critical exponent of each fit function depends (if at all) on β. In particular, the critical exponent of the reciprocal heat capacity c﹣1 is α=1-2β and those of the entropy s and internal energy u are?2β, while that of the reciprocal isothermal compressibility?κ﹣1T is γ=1. It is thus found that in the case of the two-phase fluid the Rushbrooke equation conjectured α +?2β + γ=2 combines the scaling laws resulting from the two relations c=du/dT and?κT=dlnρ/dp. In the context with c, the second temperature derivatives of the chemical potential μ and vapor pressure p are investigated. As the critical point is approached, ﹣d2μ/dT2 diverges as c, while?d2p/dT2 converges to a finite limit. This is explicitly pointed out for the two-phase fluid, water (with β=0.3155). The positive and almost vanishing internal energy of the one-phase fluid at temperatures above and close to the critical point causes conditions for large long-wavelength density fluctuations, which are observed as critical opalescence. For negative values of the internal energy, i.e. the two-phase fluid below the critical point, there are only microscopic density fluctuations. Similar critical phenomena occur when cooling a dilute gas to its Bose-Einstein condensate.展开更多
By using the non-equilibrium thermodynamic approach,the possibility of the existence of a steady state for non-equilibrium adsorption with a temperature difference between body gas and adsorbed gas was confirmed and t...By using the non-equilibrium thermodynamic approach,the possibility of the existence of a steady state for non-equilibrium adsorption with a temperature difference between body gas and adsorbed gas was confirmed and the steady state was determined.The chemical potential difference between body gas and adsorbed gas was obtained and equations for evaluating the adsorption entropy and the isosteric heat of adsorption were derived.The changes of the adsorption entropy and the isosteric heat of adsorption at the non-equilibrium steady state relative to those at the equilibrium state were calculated and the results were compared with those obtained using the traditional equilibrium thermodynamic method.The comparison suggests that the changes of the adsorption entropy and the isosteric heat of adsorption obtained using the non-equilibrium thermodynamic approach are related with not only temperature but also adsorptive state,while those obtained using the equilibrium thermodynamic method are only a function of temperature.The main reason is that the present study treats the adsorption and gas temperature change as an integrated process and considers their interaction,whereas the equilibrium thermodynamic approach separates the adsorption and gas temperature change as two independent processes and neglects their interaction.展开更多
文摘The purpose of this paper is to introduce to you, the Western people, nowadays a “widely unknown” Japanese thermodynamicist by the name of Motoyosi Sugita and his study on the thermodynamics of transient phenomena and his theory of life. This is because although he was one of the top theoretical physicists in Japan before, during and after WWII and after WWII he promoted the establishment of the biophysical society of Japan as one of the founding members, he himself and his studies themselves have seemed to be totally forgotten nowadays in spite that his study was absolutely important for the study of life. Therefore, in this paper I would like to present what kind of person he was and what he studied in physics as a review on the physics work of Motoyosi Sugita for the first time. I will follow his past studies to introduce his ideas in theoretical physics as well as in biophysics as follows: He proposed the bright ideas such as the quasi-static change in the broad sense, the virtual heat, and the field of chemical potential etc. in order to establish his own theory of thermodynamics of transient phenomena, as the generalization of the Onsager-Prigogine’s theory of the irreversible processes. By the concept of the field of chemical potential that acquired the nonlinear transport, he was seemingly successful to exceed and go beyond the scope of Onsager and Prigogine. Once he established his thermodynamics, he explored the existence of the 4th law of thermodynamics for the foundation of theory of life. He applied it to broad categories of transient phenomena including life and life being such as the theory of metabolism. He regarded the 4th law of thermodynamics as the maximum principle in transient phenomena. He tried to prove it all life long. Since I have recently found that his maximum principle can be included in more general maximum principle, which was known as the Pontryagin’s maximum principle in the theory of optimal control, I would like to explain such theories produced by Motoyosi Sugita as detailed as possible. And also I have put short history of Motoyosi Sugita’s personal life in order for you to know him well. I hope that this article helps you to know this wonderful man and understand what he did in the past, which was totally forgotten in the world and even in Japan.
文摘This study is concerned with describing the thermodynamic equilibrium of the saturated fluid with and without a free surface area A. Discussion of the role of A as system variable of the interface phase and an estimate of the ratio of the respective free energies of systems with and without A show that the system variables given by Gibbs suffice to describe the volumetric properties of the fluid. The well-known Gibbsian expressions for the internal energies of the two-phase fluid, namely for the vapor and for the condensate (liquid or solid), only differ with respect to the phase-specific volumes and . The saturation temperature T, vapor presssure p, and chemical potential are intensive parameters, each of which has the same value everywhere within the fluid, and hence are phase-independent quantities. If one succeeds in representing as a function of and , then the internal energies can also be described by expressions that only differ from one another with respect to their dependence on and . Here it is shown that can be uniquely expressed by the volume function . Therefore, the internal energies can be represented explicitly as functions of the vapor pressure and volumes of the saturated vapor and condensate and are absolutely determined. The hitherto existing problem of applied thermodynamics, calculating the internal energy from the measurable quantities T, p, , and , is thus solved. The same method applies to the calculation of the entropy, chemical potential, and heat capacity.
文摘Two-phase fluid properties such as entropy, internal energy, and heat capacity are given by thermodynamically defined fit functions. Each fit function is expressed as a temperature function in terms of a power series expansion about the critical point. The leading term with the critical exponent dominates the temperature variation between the critical and triple points. With β being introduced as the critical exponent for the difference between liquid and vapor densities, it is shown that the critical exponent of each fit function depends (if at all) on β. In particular, the critical exponent of the reciprocal heat capacity c﹣1 is α=1-2β and those of the entropy s and internal energy u are?2β, while that of the reciprocal isothermal compressibility?κ﹣1T is γ=1. It is thus found that in the case of the two-phase fluid the Rushbrooke equation conjectured α +?2β + γ=2 combines the scaling laws resulting from the two relations c=du/dT and?κT=dlnρ/dp. In the context with c, the second temperature derivatives of the chemical potential μ and vapor pressure p are investigated. As the critical point is approached, ﹣d2μ/dT2 diverges as c, while?d2p/dT2 converges to a finite limit. This is explicitly pointed out for the two-phase fluid, water (with β=0.3155). The positive and almost vanishing internal energy of the one-phase fluid at temperatures above and close to the critical point causes conditions for large long-wavelength density fluctuations, which are observed as critical opalescence. For negative values of the internal energy, i.e. the two-phase fluid below the critical point, there are only microscopic density fluctuations. Similar critical phenomena occur when cooling a dilute gas to its Bose-Einstein condensate.
基金supported by the National Natural Science Foundation of China (50576040)
文摘By using the non-equilibrium thermodynamic approach,the possibility of the existence of a steady state for non-equilibrium adsorption with a temperature difference between body gas and adsorbed gas was confirmed and the steady state was determined.The chemical potential difference between body gas and adsorbed gas was obtained and equations for evaluating the adsorption entropy and the isosteric heat of adsorption were derived.The changes of the adsorption entropy and the isosteric heat of adsorption at the non-equilibrium steady state relative to those at the equilibrium state were calculated and the results were compared with those obtained using the traditional equilibrium thermodynamic method.The comparison suggests that the changes of the adsorption entropy and the isosteric heat of adsorption obtained using the non-equilibrium thermodynamic approach are related with not only temperature but also adsorptive state,while those obtained using the equilibrium thermodynamic method are only a function of temperature.The main reason is that the present study treats the adsorption and gas temperature change as an integrated process and considers their interaction,whereas the equilibrium thermodynamic approach separates the adsorption and gas temperature change as two independent processes and neglects their interaction.