期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Rolling Bearing Feature Frequency Extraction using Extreme Average Envelope Decomposition 被引量:4
1
作者 SHI Kunju LIU Shulin +1 位作者 JIANG Chao ZHANG Hongli 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第5期1029-1036,共8页
The vibration signal contains a wealth of sensitive information which reflects the running status of the equipment. It is one of the most important steps for precise diagnosis to decompose the signal and extracts the ... The vibration signal contains a wealth of sensitive information which reflects the running status of the equipment. It is one of the most important steps for precise diagnosis to decompose the signal and extracts the effective information properly. The traditional classical adaptive signal decomposition method, such as EMD, exists the problems of mode mixing, low decomposition accuracy etc. Aiming at those problems, EAED(extreme average envelope decomposition) method is presented based on EMD. EAED method has three advantages. Firstly, it is completed through midpoint envelopment method rather than using maximum and minimum envelopment respectively as used in EMD. Therefore, the average variability of the signal can be described accurately. Secondly, in order to reduce the envelope errors during the signal decomposition, replacing two envelopes with one envelope strategy is presented. Thirdly, the similar triangle principle is utilized to calculate the time of extreme average points accurately. Thus, the influence of sampling frequency on the calculation results can be significantly reduced. Experimental results show that EAED could separate out single frequency components from a complex signal gradually. EAED could not only isolate three kinds of typical bearing fault characteristic of vibration frequency components but also has fewer decomposition layers. EAED replaces quadratic enveloping to an envelope which ensuring to isolate the fault characteristic frequency under the condition of less decomposition layers. Therefore, the precision of signal decomposition is improved. 展开更多
关键词 adaptive signal decomposition extreme average envelope decomposition EMD fault diagnosis
下载PDF
EFFICIENCY DECOMPOSITION WITH SHARED INPUTS AND OUTPUTS IN TWO-STAGE DEA 被引量:4
2
作者 Lin Li Qianzhi Dai +1 位作者 Haijun Huang Shouyang Wang 《Journal of Systems Science and Systems Engineering》 SCIE EI CSCD 2016年第1期23-38,共16页
Data envelopment analysis (DEA) is an effective non-parametric method for measuring the relative efficiencies of decision making units (DMUs) with multiple inputs and outputs. In many real situations, the internal... Data envelopment analysis (DEA) is an effective non-parametric method for measuring the relative efficiencies of decision making units (DMUs) with multiple inputs and outputs. In many real situations, the internal structure of DMUs is a two-stage network process with shared inputs used in both stages and common outputs produced by the both stages. For example, hospitals have a two-stage network structure. Stage 1 consumes resources such as information technology system, plant, equipment and admin personnel to generate outputs such as medical records, laundry and housekeeping. Stage 2 consumes the same set of resources used by stage 1 (named shared inputs) and the outputs generated by stage 1 (named intermediate measures) to provide patient services. Besides, some of outputs, for instance, patient satisfaction degrees, are generated by the two individual stages together (named shared outputs). Since some of shared inputs and outputs are hard split up and allocated to each individual stage, it needs to develop two-stage DEA methods for evaluating the performance of two-stage network processes in such problems. This paper extends the centralized model to measure the DEA efficiency of the two-stage process with non split-table shared inputs and outputs. A weighted additive approach is used to combine the two individual stages. Moreover, additive efficiency decomposition models are developed to simultaneously evaluate the maximal and the minimal achievable efficiencies for the individual stages. Finally, an example of 17 city branches of China Construction Bank in Anhui Province is employed to illustrate the proposed approach. 展开更多
关键词 Data envelopment analysis efficiency decomposition shared inputs shared outputs centralized model
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部