The phase velocity of seismic waves varies with the propagation frequency, and thus frequency-dependent phenomena appear when CO2 gas is injected into a reservoir. By dynamically considering these phenomena with reser...The phase velocity of seismic waves varies with the propagation frequency, and thus frequency-dependent phenomena appear when CO2 gas is injected into a reservoir. By dynamically considering these phenomena with reservoir conditions it is thus feasible to extract the frequency-dependent velocity factor with the aim of monitoring changes in the reservoir both before and after CO2 injection. In the paper, we derive a quantitative expression for the frequency-dependent factor based on the Robinson seismic convolution model. In addition, an inversion equation with a frequency-dependent velocity factor is constructed, and a procedure is implemented using the following four processing steps: decomposition of the spectrum by generalized S transform, wavelet extraction of cross-well seismic traces, spectrum equalization processing, and an extraction method for frequency-dependent velocity factor based on the damped least-square algorithm. An attenuation layered model is then established based on changes in the Q value of the viscoelastic medium, and spectra of migration profiles from forward modeling are obtained and analyzed. Frequency-dependent factors are extracted and compared, and the effectiveness of the method is then verified using a synthetic data. The frequency-dependent velocity factor is finally applied to target processing and oil displacement monitoring based on real seismic data obtained before and after CO2 injection in the G89 well block within Shengli oilfield. Profiles and slices of the frequency-dependent factor determine its ability to indicate differences in CO2 flooding, and the predicting results are highly consistent with those of practical investigations within the well block.展开更多
A low-power environmental monitoring system based on WSN technology is proposed to effectively monitor the environmental status and ensure the healthy growth of greenhouse crops in the greenhouse. The system performs ...A low-power environmental monitoring system based on WSN technology is proposed to effectively monitor the environmental status and ensure the healthy growth of greenhouse crops in the greenhouse. The system performs dynamic mon- itoring on the environmental data of temperature, humidity, illumination, soil tempera- ture and humidity of the greenhouse, and it reduces the energy consumption by us- ing solar energy and lithium battery as the power supply mode and dynamic power management algorithm combined with improved routing protocol. Stable and reliable, the system could effectively monitor the key environmental factors in the green- house, making it of certain promotion value.展开更多
A procedure to recognize individual discontinuities in rock mass from measurement while drilling(MWD)technology is developed,using the binary pattern of structural rock characteristics obtained from in-hole images for...A procedure to recognize individual discontinuities in rock mass from measurement while drilling(MWD)technology is developed,using the binary pattern of structural rock characteristics obtained from in-hole images for calibration.Data from two underground operations with different drilling technology and different rock mass characteristics are considered,which generalizes the application of the methodology to different sites and ensures the full operational integration of MWD data analysis.Two approaches are followed for site-specific structural model building:a discontinuity index(DI)built from variations in MWD parameters,and a machine learning(ML)classifier as function of the drilling parameters and their variability.The prediction ability of the models is quantitatively assessed as the rate of recognition of discontinuities observed in borehole logs.Differences between the parameters involved in the models for each site,and differences in their weights,highlight the site-dependence of the resulting models.The ML approach offers better performance than the classical DI,with recognition rates in the range 89%to 96%.However,the simpler DI still yields fairly accurate results,with recognition rates 70%to 90%.These results validate the adaptive MWD-based methodology as an engineering solution to predict rock structural condition in underground mining operations.展开更多
Objective:To comprehensively understand the changes and prevalence of major chronic diseases among residents of Tinghu District,Yancheng City,in 2021,and to analyze the trends of the major risk factors for the onset o...Objective:To comprehensively understand the changes and prevalence of major chronic diseases among residents of Tinghu District,Yancheng City,in 2021,and to analyze the trends of the major risk factors for the onset of chronic diseases in the region.Methods:Chronic diseases and their risk factors in Tinghu District in 2021 were monitored among the resident population who had lived in the district for five years or more and were aged 18 years or older.The survey was conducted using random cluster sampling,with 7,130 questionnaires collected.After data processing,7,012 valid questionnaires were obtained,resulting in a qualification rate of 98.35%.Results:Among the chronic diseases reported in the survey population,hypertension had the highest prevalence at 37.61%,followed by dyslipidemia at 37.19%.Other chronic diseases were ranked in order of prevalence from highest to lowest.Regardless of gender,the top three chronic diseases were hypertension,diabetes,and hyperlipidemia.Multifactorial regression analysis identified both non-preventable risk factors(such as family history,gender,and age)and preventable risk factors(such as smoking,sedentary behavior,overweight,and obesity)as significant contributors to the major chronic diseases in Tinghu District.Conclusion:Analyzing the trends in the main risk factors for chronic disease incidence in Tinghu District,Yancheng City,provides a basis for developing a new comprehensive chronic disease prevention and control plan to address chronic disease prevention and management.展开更多
The Westwood Mine aims to reuse the tailings storage facility #1(TSF #1) for solid waste storage, but,downstream of the Northwest dike is considered critical in terms of stability. This paper uses numerical modeling a...The Westwood Mine aims to reuse the tailings storage facility #1(TSF #1) for solid waste storage, but,downstream of the Northwest dike is considered critical in terms of stability. This paper uses numerical modeling along with geophysical monitoring for assessing the Northwest dike stability during the restoration phase. The impact of waste rock deposition in the upstream TSF #1 is considered. The geophysical monitoring is based on electrical resistivity methods and was used to investigate the internal structure of the dike embankment in different deposition stages. The numerical simulations were performed with SLOPE/W code. The results show a factor of safety well above the minimum recommended value of 1.5. Geophysical monitoring revealed a vertical variation in the electrical resistivity across the dike, which indicates a multilayer structure of the embankment. Without any current in situ data, the geophysical monitoring helped estimating the nature of the materials used and the internal structure of the embankment. These interpretations were validated by geological observation of geotechnical log of the embankment. Based on this study, it is recommended that the water polishing pond be partly filled before waste rock is deposited in TSF #1. In addition, to ensure the stability of the dike, the piezometric head monitoring prior to and during waste rock deposition is recommended.展开更多
Structure health monitoring based on diagnostic Lamb waves has been found to be one of the most promising techniques recently. This paper has a brief review of the new developments on this method including the basic n...Structure health monitoring based on diagnostic Lamb waves has been found to be one of the most promising techniques recently. This paper has a brief review of the new developments on this method including the basic novel of the method, fundamentals and mathematics of Lamb wave propagation, narrowband and wideband Lamb wave excitation methods, optimization of excitation factors and diagnostic Lamb wave interpretation methods.展开更多
Extreme hydrological events induced by typhoons in reservoir areas have presented severe challenges to the safe operation of hydraulic structures. Based on analysis of the seepage characteristics of an earth rock dam,...Extreme hydrological events induced by typhoons in reservoir areas have presented severe challenges to the safe operation of hydraulic structures. Based on analysis of the seepage characteristics of an earth rock dam, a novel seepage safety monitoring model was constructed in this study. The nonlinear influence processes of the antecedent reservoir water level and rainfall were assumed to follow normal distributions. The particle swarm optimization (PSO) algorithm was used to optimize the model parameters so as to raise the fitting accuracy. In addition, a mutation factor was introduced to simulate the sudden increase in the piezometric level induced by short-duration heavy rainfall and the possible historical extreme reservoir water level during a typhoon. In order to verify the efficacy of this model, the earth rock dam of the Siminghu Reservoir was used as an example. The piezometric level at the SW1-2 measuring point during Typhoon Fitow in 2013 was fitted with the present model, and a corresponding theoretical expression was established. Comparison of fitting results of the piezometric level obtained from the present statistical model and traditional statistical model with monitored values during the typhoon shows that the present model has a higher fitting accuracy and can simulate the uprush feature of the seepage pressure during the typhoon perfectly.展开更多
Background: Psychological stress and recovery monitoring is a key issue for increasing athletes' health, well-being, and performance. This multistudy report examined changes and the doseàresponse relationship...Background: Psychological stress and recovery monitoring is a key issue for increasing athletes' health, well-being, and performance. This multistudy report examined changes and the doseàresponse relationships between recoveryàstress psychological states, training load(TL), heart rate(HR), heart rate recovery(HRR), and heart rate variability(HRV) while providing evidence for the factorial validity of a short French version of the RecoveryàStress Questionnaire for Athletes(RESTQ-36-R-Sport).Methods: Four hundred and seventy-three university athletes(Study 1), 72 full expert swimmers(Study 2), and 11 national to international swimmers(Study 3) participated in the study. Data were analyzed through confirmatory factor analyses(Study 1), repeated ANOVAs and correlational analyses(Study 2), t tests and correlational analyses(Study 3).Results: Multiple-group confirmatory factor analyses showed that the RESTQ-36-R-Sport scores were partially invariant across gender, type of sport, and practice level(Study 1). A doseàresponse relationship was performed between TL and RESTQ-36-R-Sport scores during an ecological training program(Study 2). Finally, relationships were found between physiological(HRR) and psychological(RESTQ-36-R-Sport) states during an ecological tapering period leading to a national championship(Study 3).Conclusion: As a whole, these findings provided evidence for the usefulness of the short version of the RESTQ-36-R-Sport for regular monitoring to prevent potential maladaptation due to intensive competitive sport practice.展开更多
Thiopurine analogs and anti-tumor necrosis factor (TNF) agents have dramatically changed the therapeutics of inflammatory bowel diseases (IBD), improving short and long-term outcomes. Unfortunately some patients do no...Thiopurine analogs and anti-tumor necrosis factor (TNF) agents have dramatically changed the therapeutics of inflammatory bowel diseases (IBD), improving short and long-term outcomes. Unfortunately some patients do not respond to therapy and others lose response over time. The pharmacokinetic properties of these drugs are complex, with high inter-patient variability. Thiopurine analogs are metabolized through a series of pathways, which vary according to the patients’ pharmacogenetic profile. This profile largely determines the ratios of metabolites, which are in turn associated with likelihoods of clinical efficacy and/or toxicity. Understanding these mechanisms allows for manipulation of drug dose, aiming to reduce the development of toxicity while improving the efficacy of treatment. The efficacy of anti-TNF drugs is influenced by many pharmacodynamic variables. Several factors may alter drug clearance, including the concomitant use of immunomodulators (thiopurine analogs and methotrexate), systemic inflammation, the presence of anti-drug antibodies, and body mass. The treatment of IBD has evolved with the understanding of the pharmacologic profiles of immunomodulating and TNF-inhibiting medications, with good evidence for improvement in patient outcomes observed when measuring metabolic pathway indices. The role of routine measurement of metabolite/drug levels and antibodies warrants further prospective studies as we enter the era of personalized IBD care.展开更多
Software projects influenced by many human factors generate various risks. In order to develop highly quality software, it is important to respond to these risks reasonably and promptly. In addition, it is not easy fo...Software projects influenced by many human factors generate various risks. In order to develop highly quality software, it is important to respond to these risks reasonably and promptly. In addition, it is not easy for project managers to deal with these risks completely. Therefore, it is essential to manage the process quality by promoting activities of process monitoring and design quality assessment. In this paper, we discuss statistical data analysis for actual project management activities in process monitoring and design quality assessment, and analyze the effects for these software process improvement quantitatively by applying the methods of multivariate analysis. Then, we show how process factors affect the management measures of QCD (Quality, Cost, Delivery) by applying the multiple regression analyses to observed process monitoring data. Further, we quantitatively evaluate the effect by performing design quality assessment based on the principal component analysis and the factor analysis. As a result of analysis, we show that the design quality assessment activities are so effective for software process improvement. Further, based on the result of quantitative project assessment, we discuss the usefulness of process monitoring progress assessment by using a software reliability growth model. This result may enable us to give a useful quantitative measure of product release determination.展开更多
Recent findings in the pathophysiology and monitoring of hemostasis in patients with end stage liver disease have major impact on coagulation management during liver transplantation. There is increasing evidence, that...Recent findings in the pathophysiology and monitoring of hemostasis in patients with end stage liver disease have major impact on coagulation management during liver transplantation. There is increasing evidence, that the changes in both coagulation factors and platelet count regularly observed in patients with liver cirrhosis cannot be interpreted as a reliable indicator of diffuse bleeding risk. Instead, a differentiated view on hemostasis has led to the concept of a rebalanced coagulation system: While it is important to recognize that procoagulant factors are reduced in liver cirrhosis, it is also evident that synthesis of anticoagulant factors and fibrinolytic proteins produced in the liver is also diminished. Similarly, the decreased platelet count may be counterbalanced by increased platelet aggregability caused by highly active von Willebrand multimeres. The coagulation system is therefor stated to be rebalanced. While under normal "unstressed" conditions diffuse bleeding is rarely observed, however both diffuse bleeding or thrombus formation may occur when compensation mechanisms are exhausted. While most patients presenting for liver transplantation have severe cirrhosis, liver function and thus production of pro- and anticoagulant factors can be preserved especially in cholestatic liver disease. During liver transplantation, profound changes in the hemostasis system can occur. Surgical bleeding can lead to diffuse bleeding as coagulation factors and platelets are already reduced. Ischemia and tissue trauma can lead to alterations of hemostasis comparable to trauma induced coagulopathy. A further common disturbance often starting with the reperfusion of the transplanted organ is hyperfibrinolysis which can eventually precipitate complete consumption of fibrinogen and an endogenous heparinization by glycocalyx shedding. Moreover, thrombotic events inliver transplantations are not uncommon and contribute to increased mortality. Besides conventional laboratory methods, bed-side monitoring of hemostasis(e.g., thrombelastography, thrombelastometry) is often used during liver transplantation to rapidly diagnose decreases in fibrinogen and platelet count as well as hyperfibrinolysis and to guide treatment with blood products, factor concentrates, and antifibrinolytics. There is also evidence which suggests when algorithms based on bed-side hemostasis monitoring are used a reduction of blood loss, blood product use, and eventual mortality are possible. Notably, the bed-side monitoring of anticoagulant pathways and the thrombotic risk is not possible at time and thus a cautious and restrictive use of blood products is recommended.展开更多
In this work, the objectives were to provide a scientific basis for environmental governance and to ensure staff health by real-time monitoring of indoor air quality of the pathology department. Using eagle eye enviro...In this work, the objectives were to provide a scientific basis for environmental governance and to ensure staff health by real-time monitoring of indoor air quality of the pathology department. Using eagle eye environment monitor to make a real-time dynamic monitoring of the air quality of the pathological technical room for 30 days, the paper records the monitoring data of PM 2.5, PM 10, formaldehyde, CO2, total volatile organic compounds (TVOC) every day at Beijing time 3 a.m, 10 am, 1 pm, 4 pm, and 10 pm, and makes a summarization and analysis. The average value of CO2 concentration of the 5 time points is (0.05 ± 0.01)%, and each time point concentration are different (P 0.05);the average TVOC concentration of the 5 time points is (0.08 + 0.31) mg/m3. They are all different between the concentration at each time point (P 2 and NO are not checked out. Through the real-time online monitoring of the pathology room, we find that the formaldehyde concentration of different time periods is far more than the safety value standard, and the concentration of formaldehyde, CO2, PM 2.5, PM 10 and total volatile organic compound (TVOC) is different at different time periods, and the concentrations at working time are higher than the non-working time. We must take effective measures to control the concentration of harmful gases in order to ensure the staff’s health.展开更多
In light of demands for wireless monitoring and the characteristics of wireless channel,a complete deployment method containing channel survey,path loss estimation,and gradient grade of wireless relay nodes is propose...In light of demands for wireless monitoring and the characteristics of wireless channel,a complete deployment method containing channel survey,path loss estimation,and gradient grade of wireless relay nodes is proposed.It can be proved by experiments that under the premise of meeting the requirements of real-time and redundant-topology,the total number of relay nodes could be minimized by using the proposed method.展开更多
A spherical tissue equivalent proportional counter(TEPC) for neutron monitoring has been developed. It was properly designed to produce a uniform electric field intensity around the anode wire. An internal ^(241)Am al...A spherical tissue equivalent proportional counter(TEPC) for neutron monitoring has been developed. It was properly designed to produce a uniform electric field intensity around the anode wire. An internal ^(241)Am alpha source was adopted for lineal energy calibration. The TEPC was characterized in terms of dose equivalent response in a standard ^(252)Cf neutron field, and was tested with 2.45 MeV neutrons. Microdosimetric spectra, frequency mean lineal energy and dose-average mean lineal energy of 2.45 MeV neutrons were obtained and compared with FLUKA Monte Carlo simulation results. The measurement and simulation results agreed well. The mean quality factor and dose equivalent values evaluated from the 2.45 MeV neutron measurement were in good agreement with the recommended effective quality factor and ambient dose equivalent H*(10),respectively. Preliminary results have proved the availability of the developed TEPC for neutron monitoring.展开更多
基金supported by the Pilot Project of Sinopec(P14085)
文摘The phase velocity of seismic waves varies with the propagation frequency, and thus frequency-dependent phenomena appear when CO2 gas is injected into a reservoir. By dynamically considering these phenomena with reservoir conditions it is thus feasible to extract the frequency-dependent velocity factor with the aim of monitoring changes in the reservoir both before and after CO2 injection. In the paper, we derive a quantitative expression for the frequency-dependent factor based on the Robinson seismic convolution model. In addition, an inversion equation with a frequency-dependent velocity factor is constructed, and a procedure is implemented using the following four processing steps: decomposition of the spectrum by generalized S transform, wavelet extraction of cross-well seismic traces, spectrum equalization processing, and an extraction method for frequency-dependent velocity factor based on the damped least-square algorithm. An attenuation layered model is then established based on changes in the Q value of the viscoelastic medium, and spectra of migration profiles from forward modeling are obtained and analyzed. Frequency-dependent factors are extracted and compared, and the effectiveness of the method is then verified using a synthetic data. The frequency-dependent velocity factor is finally applied to target processing and oil displacement monitoring based on real seismic data obtained before and after CO2 injection in the G89 well block within Shengli oilfield. Profiles and slices of the frequency-dependent factor determine its ability to indicate differences in CO2 flooding, and the predicting results are highly consistent with those of practical investigations within the well block.
基金Supported by the Fund for Independent Innovation of Agricultural Sciences in Jiangsu Province(CX(14)2108&CX(13)5066)~~
文摘A low-power environmental monitoring system based on WSN technology is proposed to effectively monitor the environmental status and ensure the healthy growth of greenhouse crops in the greenhouse. The system performs dynamic mon- itoring on the environmental data of temperature, humidity, illumination, soil tempera- ture and humidity of the greenhouse, and it reduces the energy consumption by us- ing solar energy and lithium battery as the power supply mode and dynamic power management algorithm combined with improved routing protocol. Stable and reliable, the system could effectively monitor the key environmental factors in the green- house, making it of certain promotion value.
基金conducted under the illu MINEation project, funded by the European Union’s Horizon 2020 research and innovation program under grant agreement (No. 869379)supported by the China Scholarship Council (No. 202006370006)
文摘A procedure to recognize individual discontinuities in rock mass from measurement while drilling(MWD)technology is developed,using the binary pattern of structural rock characteristics obtained from in-hole images for calibration.Data from two underground operations with different drilling technology and different rock mass characteristics are considered,which generalizes the application of the methodology to different sites and ensures the full operational integration of MWD data analysis.Two approaches are followed for site-specific structural model building:a discontinuity index(DI)built from variations in MWD parameters,and a machine learning(ML)classifier as function of the drilling parameters and their variability.The prediction ability of the models is quantitatively assessed as the rate of recognition of discontinuities observed in borehole logs.Differences between the parameters involved in the models for each site,and differences in their weights,highlight the site-dependence of the resulting models.The ML approach offers better performance than the classical DI,with recognition rates in the range 89%to 96%.However,the simpler DI still yields fairly accurate results,with recognition rates 70%to 90%.These results validate the adaptive MWD-based methodology as an engineering solution to predict rock structural condition in underground mining operations.
文摘Objective:To comprehensively understand the changes and prevalence of major chronic diseases among residents of Tinghu District,Yancheng City,in 2021,and to analyze the trends of the major risk factors for the onset of chronic diseases in the region.Methods:Chronic diseases and their risk factors in Tinghu District in 2021 were monitored among the resident population who had lived in the district for five years or more and were aged 18 years or older.The survey was conducted using random cluster sampling,with 7,130 questionnaires collected.After data processing,7,012 valid questionnaires were obtained,resulting in a qualification rate of 98.35%.Results:Among the chronic diseases reported in the survey population,hypertension had the highest prevalence at 37.61%,followed by dyslipidemia at 37.19%.Other chronic diseases were ranked in order of prevalence from highest to lowest.Regardless of gender,the top three chronic diseases were hypertension,diabetes,and hyperlipidemia.Multifactorial regression analysis identified both non-preventable risk factors(such as family history,gender,and age)and preventable risk factors(such as smoking,sedentary behavior,overweight,and obesity)as significant contributors to the major chronic diseases in Tinghu District.Conclusion:Analyzing the trends in the main risk factors for chronic disease incidence in Tinghu District,Yancheng City,provides a basis for developing a new comprehensive chronic disease prevention and control plan to address chronic disease prevention and management.
基金financially supported by NSERC (Natural Sciences and Engineering Research Council of Canada) Engage grants
文摘The Westwood Mine aims to reuse the tailings storage facility #1(TSF #1) for solid waste storage, but,downstream of the Northwest dike is considered critical in terms of stability. This paper uses numerical modeling along with geophysical monitoring for assessing the Northwest dike stability during the restoration phase. The impact of waste rock deposition in the upstream TSF #1 is considered. The geophysical monitoring is based on electrical resistivity methods and was used to investigate the internal structure of the dike embankment in different deposition stages. The numerical simulations were performed with SLOPE/W code. The results show a factor of safety well above the minimum recommended value of 1.5. Geophysical monitoring revealed a vertical variation in the electrical resistivity across the dike, which indicates a multilayer structure of the embankment. Without any current in situ data, the geophysical monitoring helped estimating the nature of the materials used and the internal structure of the embankment. These interpretations were validated by geological observation of geotechnical log of the embankment. Based on this study, it is recommended that the water polishing pond be partly filled before waste rock is deposited in TSF #1. In addition, to ensure the stability of the dike, the piezometric head monitoring prior to and during waste rock deposition is recommended.
基金The authors acknowledge the financial supports from the National Natural Science Foundation of China under grant No.90305005,50135030
文摘Structure health monitoring based on diagnostic Lamb waves has been found to be one of the most promising techniques recently. This paper has a brief review of the new developments on this method including the basic novel of the method, fundamentals and mathematics of Lamb wave propagation, narrowband and wideband Lamb wave excitation methods, optimization of excitation factors and diagnostic Lamb wave interpretation methods.
基金supported by the National Natural Science Foundation of China(Grants No.51179108 and 51679151)the Special Fund for the Public Welfare Industry of the Ministry of Water Resources of China(Grant No.201501033)+1 种基金the National Key Research and Development Program(Grant No.2016YFC0401603)the Program Sponsored for Scientific Innovation Research of College Graduates in Jiangsu Province(Grant No.KYZZ15_0140)
文摘Extreme hydrological events induced by typhoons in reservoir areas have presented severe challenges to the safe operation of hydraulic structures. Based on analysis of the seepage characteristics of an earth rock dam, a novel seepage safety monitoring model was constructed in this study. The nonlinear influence processes of the antecedent reservoir water level and rainfall were assumed to follow normal distributions. The particle swarm optimization (PSO) algorithm was used to optimize the model parameters so as to raise the fitting accuracy. In addition, a mutation factor was introduced to simulate the sudden increase in the piezometric level induced by short-duration heavy rainfall and the possible historical extreme reservoir water level during a typhoon. In order to verify the efficacy of this model, the earth rock dam of the Siminghu Reservoir was used as an example. The piezometric level at the SW1-2 measuring point during Typhoon Fitow in 2013 was fitted with the present model, and a corresponding theoretical expression was established. Comparison of fitting results of the piezometric level obtained from the present statistical model and traditional statistical model with monitored values during the typhoon shows that the present model has a higher fitting accuracy and can simulate the uprush feature of the seepage pressure during the typhoon perfectly.
基金supported by the Conseil Régional de Bourgogne, the club of Alliance Dijon Natationthe Comité Régional de Natation Bourgogne under Grant number 2013-9201AAO048S02835
文摘Background: Psychological stress and recovery monitoring is a key issue for increasing athletes' health, well-being, and performance. This multistudy report examined changes and the doseàresponse relationships between recoveryàstress psychological states, training load(TL), heart rate(HR), heart rate recovery(HRR), and heart rate variability(HRV) while providing evidence for the factorial validity of a short French version of the RecoveryàStress Questionnaire for Athletes(RESTQ-36-R-Sport).Methods: Four hundred and seventy-three university athletes(Study 1), 72 full expert swimmers(Study 2), and 11 national to international swimmers(Study 3) participated in the study. Data were analyzed through confirmatory factor analyses(Study 1), repeated ANOVAs and correlational analyses(Study 2), t tests and correlational analyses(Study 3).Results: Multiple-group confirmatory factor analyses showed that the RESTQ-36-R-Sport scores were partially invariant across gender, type of sport, and practice level(Study 1). A doseàresponse relationship was performed between TL and RESTQ-36-R-Sport scores during an ecological training program(Study 2). Finally, relationships were found between physiological(HRR) and psychological(RESTQ-36-R-Sport) states during an ecological tapering period leading to a national championship(Study 3).Conclusion: As a whole, these findings provided evidence for the usefulness of the short version of the RESTQ-36-R-Sport for regular monitoring to prevent potential maladaptation due to intensive competitive sport practice.
文摘Thiopurine analogs and anti-tumor necrosis factor (TNF) agents have dramatically changed the therapeutics of inflammatory bowel diseases (IBD), improving short and long-term outcomes. Unfortunately some patients do not respond to therapy and others lose response over time. The pharmacokinetic properties of these drugs are complex, with high inter-patient variability. Thiopurine analogs are metabolized through a series of pathways, which vary according to the patients’ pharmacogenetic profile. This profile largely determines the ratios of metabolites, which are in turn associated with likelihoods of clinical efficacy and/or toxicity. Understanding these mechanisms allows for manipulation of drug dose, aiming to reduce the development of toxicity while improving the efficacy of treatment. The efficacy of anti-TNF drugs is influenced by many pharmacodynamic variables. Several factors may alter drug clearance, including the concomitant use of immunomodulators (thiopurine analogs and methotrexate), systemic inflammation, the presence of anti-drug antibodies, and body mass. The treatment of IBD has evolved with the understanding of the pharmacologic profiles of immunomodulating and TNF-inhibiting medications, with good evidence for improvement in patient outcomes observed when measuring metabolic pathway indices. The role of routine measurement of metabolite/drug levels and antibodies warrants further prospective studies as we enter the era of personalized IBD care.
文摘Software projects influenced by many human factors generate various risks. In order to develop highly quality software, it is important to respond to these risks reasonably and promptly. In addition, it is not easy for project managers to deal with these risks completely. Therefore, it is essential to manage the process quality by promoting activities of process monitoring and design quality assessment. In this paper, we discuss statistical data analysis for actual project management activities in process monitoring and design quality assessment, and analyze the effects for these software process improvement quantitatively by applying the methods of multivariate analysis. Then, we show how process factors affect the management measures of QCD (Quality, Cost, Delivery) by applying the multiple regression analyses to observed process monitoring data. Further, we quantitatively evaluate the effect by performing design quality assessment based on the principal component analysis and the factor analysis. As a result of analysis, we show that the design quality assessment activities are so effective for software process improvement. Further, based on the result of quantitative project assessment, we discuss the usefulness of process monitoring progress assessment by using a software reliability growth model. This result may enable us to give a useful quantitative measure of product release determination.
文摘Recent findings in the pathophysiology and monitoring of hemostasis in patients with end stage liver disease have major impact on coagulation management during liver transplantation. There is increasing evidence, that the changes in both coagulation factors and platelet count regularly observed in patients with liver cirrhosis cannot be interpreted as a reliable indicator of diffuse bleeding risk. Instead, a differentiated view on hemostasis has led to the concept of a rebalanced coagulation system: While it is important to recognize that procoagulant factors are reduced in liver cirrhosis, it is also evident that synthesis of anticoagulant factors and fibrinolytic proteins produced in the liver is also diminished. Similarly, the decreased platelet count may be counterbalanced by increased platelet aggregability caused by highly active von Willebrand multimeres. The coagulation system is therefor stated to be rebalanced. While under normal "unstressed" conditions diffuse bleeding is rarely observed, however both diffuse bleeding or thrombus formation may occur when compensation mechanisms are exhausted. While most patients presenting for liver transplantation have severe cirrhosis, liver function and thus production of pro- and anticoagulant factors can be preserved especially in cholestatic liver disease. During liver transplantation, profound changes in the hemostasis system can occur. Surgical bleeding can lead to diffuse bleeding as coagulation factors and platelets are already reduced. Ischemia and tissue trauma can lead to alterations of hemostasis comparable to trauma induced coagulopathy. A further common disturbance often starting with the reperfusion of the transplanted organ is hyperfibrinolysis which can eventually precipitate complete consumption of fibrinogen and an endogenous heparinization by glycocalyx shedding. Moreover, thrombotic events inliver transplantations are not uncommon and contribute to increased mortality. Besides conventional laboratory methods, bed-side monitoring of hemostasis(e.g., thrombelastography, thrombelastometry) is often used during liver transplantation to rapidly diagnose decreases in fibrinogen and platelet count as well as hyperfibrinolysis and to guide treatment with blood products, factor concentrates, and antifibrinolytics. There is also evidence which suggests when algorithms based on bed-side hemostasis monitoring are used a reduction of blood loss, blood product use, and eventual mortality are possible. Notably, the bed-side monitoring of anticoagulant pathways and the thrombotic risk is not possible at time and thus a cautious and restrictive use of blood products is recommended.
文摘In this work, the objectives were to provide a scientific basis for environmental governance and to ensure staff health by real-time monitoring of indoor air quality of the pathology department. Using eagle eye environment monitor to make a real-time dynamic monitoring of the air quality of the pathological technical room for 30 days, the paper records the monitoring data of PM 2.5, PM 10, formaldehyde, CO2, total volatile organic compounds (TVOC) every day at Beijing time 3 a.m, 10 am, 1 pm, 4 pm, and 10 pm, and makes a summarization and analysis. The average value of CO2 concentration of the 5 time points is (0.05 ± 0.01)%, and each time point concentration are different (P 0.05);the average TVOC concentration of the 5 time points is (0.08 + 0.31) mg/m3. They are all different between the concentration at each time point (P 2 and NO are not checked out. Through the real-time online monitoring of the pathology room, we find that the formaldehyde concentration of different time periods is far more than the safety value standard, and the concentration of formaldehyde, CO2, PM 2.5, PM 10 and total volatile organic compound (TVOC) is different at different time periods, and the concentrations at working time are higher than the non-working time. We must take effective measures to control the concentration of harmful gases in order to ensure the staff’s health.
基金provided by the Natinal Basic Research Program of China(No.2012CB026000)
文摘In light of demands for wireless monitoring and the characteristics of wireless channel,a complete deployment method containing channel survey,path loss estimation,and gradient grade of wireless relay nodes is proposed.It can be proved by experiments that under the premise of meeting the requirements of real-time and redundant-topology,the total number of relay nodes could be minimized by using the proposed method.
基金Supported by the Key Technology of Fusion Reactor Radiation Protection Foundation(No.2014GB112005)
文摘A spherical tissue equivalent proportional counter(TEPC) for neutron monitoring has been developed. It was properly designed to produce a uniform electric field intensity around the anode wire. An internal ^(241)Am alpha source was adopted for lineal energy calibration. The TEPC was characterized in terms of dose equivalent response in a standard ^(252)Cf neutron field, and was tested with 2.45 MeV neutrons. Microdosimetric spectra, frequency mean lineal energy and dose-average mean lineal energy of 2.45 MeV neutrons were obtained and compared with FLUKA Monte Carlo simulation results. The measurement and simulation results agreed well. The mean quality factor and dose equivalent values evaluated from the 2.45 MeV neutron measurement were in good agreement with the recommended effective quality factor and ambient dose equivalent H*(10),respectively. Preliminary results have proved the availability of the developed TEPC for neutron monitoring.