As computer simulation increasingly supports engine er ing design and manufacture, the requirement for a computer software environment providing an integration platform for computational engineering software increas e...As computer simulation increasingly supports engine er ing design and manufacture, the requirement for a computer software environment providing an integration platform for computational engineering software increas es. A key component of an integrated environment is the use of computational eng ineering to assist and support solutions for complex design. Computer methods fo r structural, flow and thermal analysis are well developed and have been used in design for many years. Many software packages are now available which provi de an advanced capability. However, they are not designed for modelling of powde r forming processes. This paper describes the powder compaction software (PCS_SU T), which is designed for pre- and post-processing for computational simulatio n of the process compaction of powder. In the PCS_SUT software, the adaptive analysis of transient metal powder forming process is simulated by the finite element method based on deformation theories . The error estimates and adaptive remeshing schemes are applied for updated co -ordinate analysis. A generalized Newmark scheme is used for the time domain di scretization and the final nonlinear equations are solved by a Newton-Raphson p rocedure. An incremental elasto-plastic material model is used to simulate the compaction process. To describe the constitutive model of nonlinear behaviour of powder materials, a combination of Mohr-Coulomb and elliptical yield cap model is applied. This model reflects the yielding, frictional and densification char acteristics of powder along with strain and geometrical hardening which occurs d uring the compaction process. A hardening rule is used to define the dependence of the yield surface on the degree of plastic straining. A plasticity theory for friction is employed in the treatment of the powder-tooling interface. The inv olvement of two different materials, which have contact and relative movement in relation to each other, must be considered. A special formulation for friction modelling is coupled with a material formulation. The interface behaviour betwee n the die and the powder is modelled by using an interface element mesh. In the present paper, we have demonstrated pre- and post-processor finite elem ent software, written in Visual Basic, to generate the graphical model and visua lly display the computed results. The software consist of three main part: · Pre-processor: It is used to create the model, generate an app ropriate finite element grid, apply the appropriate boundary conditions, and vie w the total model. The geometric model can be used to associate the mesh with th e physical attributes such as element properties, material properties, or loads and boundary conditions. · Analysis: It can deal with two-dimensional and axi-symmetric applications for linear and non-linear behaviour of material in static and dyna mic analyses. Both triangular and quadrilateral elements are available in the e lement library, including 3-noded, 6-noded and 7-noded (T6B1) triangles and 4 -noded, 8-noded and 9-noded quadrilaterals. The direct implicit algorithm bas ed on the generalized Newmark scheme is used for the time integration and an aut omatic time step control facility is provided. For non-linear iteration, choice s among fully or modified Newton-Raphson method and quasi-Newton method, using the initial stiffness method, Davidon inverse method or BFGS inverse method, ar e possible. · Post-processor: It provides visualization of the computed resu lts, when the finite element model and analysis have been completed. Post-proce ssing is vital to allow the appropriate interpretation of the completed results of the finite element analysis. It provides the visual means to interpret the va st amounts of computed results generated. Finally, the powder behaviour during the compaction of a multi-level component is numerically simulated by the PCS_SUT software, as shown in Fig.1. The predict ive compaction forces at different displacements are computed and compared with the available experimental展开更多
An understanding of the sedimentary environment in relation to its controlling factors is of great importance in coastal geomorphology,ecology,tourism and aquaculture studies.We attempt to deal with this issue,using a...An understanding of the sedimentary environment in relation to its controlling factors is of great importance in coastal geomorphology,ecology,tourism and aquaculture studies.We attempt to deal with this issue,using a case study from the Xincun Lagoon,Hainan Island in southern China.For the study,surficial sediment samples were collected,together with hydrodynamic and bathymetric surveys,during August 2013.Numerical simulation was carried out to obtain high-spatial resolution tidal current data.The sediment samples were analyzed to derive mean grain size,sorting coefficient,skewness and kurtosis,together with the sand,silt and clay contents.The modern sedimentary environments were classified using system cluster and principal component analyses.Grain size analysis reveals that the sediments are characterized by extremely slightly sandy silty mud(ESSSM) and slightly silty sand(SSS),which are distributed in the central lagoon and near-shore shallow water areas,respectively.Mean grain size varies from 0 to 8.0Ф,with an average of 4.6Ф.The silt content is the highest,i.e.,52% on average,with the average contents of sand and clay being 43% and 5%,respectively.There exists a significant correlation between mean size and water depth,suggesting that the surficial sediments become finer with increasing water depth.Cluster analyses reveals two groups of samples.The first group is characterized by mean grain size of more than 5.5Ф,whilst the second group has mean grain size of below 3.5Ф.Further,these groups also have different correlations between mean grain size and the other grain size parameters.In terms of the tidal current,the average values of the root mean square velocity(RMSV) are 7.5 cm/s and 6.9 cm/s on springs and neaps,respectively.For the RMSVs that are higher than 4 cm/s,a significant positive correlation is found between the content of the 63–125 μm fraction and the RMSV,suggesting that the RMSV determines the variability of the very fine sand fraction.Based on system cluster and principal component analyses(PCA),the modern sedimentary environments are classified into three types according to the grain size parameters,RMSVs and water depth data.The results suggest the importance of grain size parameters and high-spatial resolution hydrodynamic data in differentiating the coastal sedimentary environments.展开更多
文摘As computer simulation increasingly supports engine er ing design and manufacture, the requirement for a computer software environment providing an integration platform for computational engineering software increas es. A key component of an integrated environment is the use of computational eng ineering to assist and support solutions for complex design. Computer methods fo r structural, flow and thermal analysis are well developed and have been used in design for many years. Many software packages are now available which provi de an advanced capability. However, they are not designed for modelling of powde r forming processes. This paper describes the powder compaction software (PCS_SU T), which is designed for pre- and post-processing for computational simulatio n of the process compaction of powder. In the PCS_SUT software, the adaptive analysis of transient metal powder forming process is simulated by the finite element method based on deformation theories . The error estimates and adaptive remeshing schemes are applied for updated co -ordinate analysis. A generalized Newmark scheme is used for the time domain di scretization and the final nonlinear equations are solved by a Newton-Raphson p rocedure. An incremental elasto-plastic material model is used to simulate the compaction process. To describe the constitutive model of nonlinear behaviour of powder materials, a combination of Mohr-Coulomb and elliptical yield cap model is applied. This model reflects the yielding, frictional and densification char acteristics of powder along with strain and geometrical hardening which occurs d uring the compaction process. A hardening rule is used to define the dependence of the yield surface on the degree of plastic straining. A plasticity theory for friction is employed in the treatment of the powder-tooling interface. The inv olvement of two different materials, which have contact and relative movement in relation to each other, must be considered. A special formulation for friction modelling is coupled with a material formulation. The interface behaviour betwee n the die and the powder is modelled by using an interface element mesh. In the present paper, we have demonstrated pre- and post-processor finite elem ent software, written in Visual Basic, to generate the graphical model and visua lly display the computed results. The software consist of three main part: · Pre-processor: It is used to create the model, generate an app ropriate finite element grid, apply the appropriate boundary conditions, and vie w the total model. The geometric model can be used to associate the mesh with th e physical attributes such as element properties, material properties, or loads and boundary conditions. · Analysis: It can deal with two-dimensional and axi-symmetric applications for linear and non-linear behaviour of material in static and dyna mic analyses. Both triangular and quadrilateral elements are available in the e lement library, including 3-noded, 6-noded and 7-noded (T6B1) triangles and 4 -noded, 8-noded and 9-noded quadrilaterals. The direct implicit algorithm bas ed on the generalized Newmark scheme is used for the time integration and an aut omatic time step control facility is provided. For non-linear iteration, choice s among fully or modified Newton-Raphson method and quasi-Newton method, using the initial stiffness method, Davidon inverse method or BFGS inverse method, ar e possible. · Post-processor: It provides visualization of the computed resu lts, when the finite element model and analysis have been completed. Post-proce ssing is vital to allow the appropriate interpretation of the completed results of the finite element analysis. It provides the visual means to interpret the va st amounts of computed results generated. Finally, the powder behaviour during the compaction of a multi-level component is numerically simulated by the PCS_SUT software, as shown in Fig.1. The predict ive compaction forces at different displacements are computed and compared with the available experimental
基金The National Natural Science Foundation of China under contract No.41530962
文摘An understanding of the sedimentary environment in relation to its controlling factors is of great importance in coastal geomorphology,ecology,tourism and aquaculture studies.We attempt to deal with this issue,using a case study from the Xincun Lagoon,Hainan Island in southern China.For the study,surficial sediment samples were collected,together with hydrodynamic and bathymetric surveys,during August 2013.Numerical simulation was carried out to obtain high-spatial resolution tidal current data.The sediment samples were analyzed to derive mean grain size,sorting coefficient,skewness and kurtosis,together with the sand,silt and clay contents.The modern sedimentary environments were classified using system cluster and principal component analyses.Grain size analysis reveals that the sediments are characterized by extremely slightly sandy silty mud(ESSSM) and slightly silty sand(SSS),which are distributed in the central lagoon and near-shore shallow water areas,respectively.Mean grain size varies from 0 to 8.0Ф,with an average of 4.6Ф.The silt content is the highest,i.e.,52% on average,with the average contents of sand and clay being 43% and 5%,respectively.There exists a significant correlation between mean size and water depth,suggesting that the surficial sediments become finer with increasing water depth.Cluster analyses reveals two groups of samples.The first group is characterized by mean grain size of more than 5.5Ф,whilst the second group has mean grain size of below 3.5Ф.Further,these groups also have different correlations between mean grain size and the other grain size parameters.In terms of the tidal current,the average values of the root mean square velocity(RMSV) are 7.5 cm/s and 6.9 cm/s on springs and neaps,respectively.For the RMSVs that are higher than 4 cm/s,a significant positive correlation is found between the content of the 63–125 μm fraction and the RMSV,suggesting that the RMSV determines the variability of the very fine sand fraction.Based on system cluster and principal component analyses(PCA),the modern sedimentary environments are classified into three types according to the grain size parameters,RMSVs and water depth data.The results suggest the importance of grain size parameters and high-spatial resolution hydrodynamic data in differentiating the coastal sedimentary environments.