A compact mirror-like ECR (electron cyclotron resonance) Plasma source for the ionosphere environment simulator was described for the fort time in China. The Overall sources system was composed of a 200 W 2.45 GHz mic...A compact mirror-like ECR (electron cyclotron resonance) Plasma source for the ionosphere environment simulator was described for the fort time in China. The Overall sources system was composed of a 200 W 2.45 GHz microwave source, a coastal 3A./4 TEM-mode microwave resonance applicator, column and cylindrical Nd-Fe-P magnets, a quartz bell-shaped discharge chamber, a gas inlet system and a plasma-diffusing bore. The preliminary experiment demonstrated that ambi-polar diffusion plasma stream into the simulator (-500 mm long) formed an environment with following parameters: a plasma density ne of 104 cm-3 - 106 cm-3, an electron temperature Te < 5 eV at a pressure P of 10-1 Pa-10-3 Pa, a Plasma uniformity of > 80% over the experimental target with a 160-mm-in-diameter, satisfying primarily the requirement of simulating in a severe ionosphere environment.展开更多
In the mid July, 2011, the GVU-600 space environment simulator developed by Bei-jing Institute of Spacecraft Environment Engineering of China Academy of Space Technology (CAST) under China
In order to investigate the effect of space environmental factors on spacecraft materials, a ground-based simulation facility for space atomic oxygen(AO) irradiation was developed in our laboratory. Some Kapton film...In order to investigate the effect of space environmental factors on spacecraft materials, a ground-based simulation facility for space atomic oxygen(AO) irradiation was developed in our laboratory. Some Kapton film samples were subjected to AO beam generated by this facility. The Kapton films before and after AO exposure were analyzed comparatively using optical microscopy, scanning electronic microscopy, atomic force microscopy, high-precision microbalance, and X-ray photoelectron spectroscopy. The experimental results indicate that the transmittance of Kapton film will be reduced by AO irradiation notably, and its color deepens from pale yellow to brown. Surface roughness of the AO-treated sample is already increased obviously after AO irradiation for 5 hours, and exhibits a flannel-like appearance after 15 hours’ exposure in AO beam. The imide rings and benzene rings in kapton molecule are partially decomposed, and some new bonds form during AO irradiation. The mass loss of kapton film increases linearly with the increase of AO fluence, which is resulted from the formation of volatile products, such as CO, CO2 and NOx. The breakage in structure and degradation in properties of AO-treated Kapton film can be attributed to the integrated effect ofimpaction and oxidization of AO beam. The test results agree well with the space flight experimental data.展开更多
Dynamic environmental testing is an effective means to study the energy and long-term hygrothermal performance of building enclosures. Southeast University is designing and building a large-scale dynamic environment s...Dynamic environmental testing is an effective means to study the energy and long-term hygrothermal performance of building enclosures. Southeast University is designing and building a large-scale dynamic environment simulation testing facility. It can simuhaneously and dynamically simulate temperature, relative humidity, infrared solar radiation, UV radiation, and precipitation. A transformation is needed to predict the energy and long-term hygrothermal performance of building enclosures under real service conditions using data obtained from accelerated tests.展开更多
An understanding of the sedimentary environment in relation to its controlling factors is of great importance in coastal geomorphology,ecology,tourism and aquaculture studies.We attempt to deal with this issue,using a...An understanding of the sedimentary environment in relation to its controlling factors is of great importance in coastal geomorphology,ecology,tourism and aquaculture studies.We attempt to deal with this issue,using a case study from the Xincun Lagoon,Hainan Island in southern China.For the study,surficial sediment samples were collected,together with hydrodynamic and bathymetric surveys,during August 2013.Numerical simulation was carried out to obtain high-spatial resolution tidal current data.The sediment samples were analyzed to derive mean grain size,sorting coefficient,skewness and kurtosis,together with the sand,silt and clay contents.The modern sedimentary environments were classified using system cluster and principal component analyses.Grain size analysis reveals that the sediments are characterized by extremely slightly sandy silty mud(ESSSM) and slightly silty sand(SSS),which are distributed in the central lagoon and near-shore shallow water areas,respectively.Mean grain size varies from 0 to 8.0Ф,with an average of 4.6Ф.The silt content is the highest,i.e.,52% on average,with the average contents of sand and clay being 43% and 5%,respectively.There exists a significant correlation between mean size and water depth,suggesting that the surficial sediments become finer with increasing water depth.Cluster analyses reveals two groups of samples.The first group is characterized by mean grain size of more than 5.5Ф,whilst the second group has mean grain size of below 3.5Ф.Further,these groups also have different correlations between mean grain size and the other grain size parameters.In terms of the tidal current,the average values of the root mean square velocity(RMSV) are 7.5 cm/s and 6.9 cm/s on springs and neaps,respectively.For the RMSVs that are higher than 4 cm/s,a significant positive correlation is found between the content of the 63–125 μm fraction and the RMSV,suggesting that the RMSV determines the variability of the very fine sand fraction.Based on system cluster and principal component analyses(PCA),the modern sedimentary environments are classified into three types according to the grain size parameters,RMSVs and water depth data.The results suggest the importance of grain size parameters and high-spatial resolution hydrodynamic data in differentiating the coastal sedimentary environments.展开更多
Corrosion behavior of 300M in neutralcorrosion environments containing Na Clsimulated by totalimmersion(TI),salt spraying(SS)and periodic immersion(PI),was investigated by surface analysis techniques,corrosion w...Corrosion behavior of 300M in neutralcorrosion environments containing Na Clsimulated by totalimmersion(TI),salt spraying(SS)and periodic immersion(PI),was investigated by surface analysis techniques,corrosion weight-loss method,and electrochemicalmeasurements.In totalimmersion environment,rust on the steelconsisted of a porous outer rust layer with main constituent of γ-Fe OOH,and an inner rust layer of dense Fe_3O_4 film with network broad cracks.In salt spraying environment,outer rust with main composition of γ-Fe OOH/α-Fe OOH/Fe_3O_4 was compact,and inner rust showed dense Fe_3O_4 film.Rust formed by periodic immersion exhibited a compact outer rust layer with constituent of α-Fe OOH/γ-Fe OOH/Fe_3O_4 and an inner rust layer with composition of α-Fe OOH/α-Fe_2O_3;inner rust showed a ultra-dense film adherent to the steel.The corrosion rate showed a rule of vss(salt spraying)〉vti(totalimmersion)〉〉vpi(periodic immersion)in 0-240 h,and vss≈vti?vpiin 240-720 h.The rust formed by periodic immersion was dense and compact,with stable electrochemicalproperties,and had excellent protection on the steel.Humidity and oxygen concentration in allthe environments played major roles in rust formation.展开更多
In this study,an environmental simulation platform(ETS-02)was constructed for high-precision geodesic instruments(e.g.,absolute/relative gravimeters and inclinometers),to test the disturbances caused by environmental ...In this study,an environmental simulation platform(ETS-02)was constructed for high-precision geodesic instruments(e.g.,absolute/relative gravimeters and inclinometers),to test the disturbances caused by environmental fl uctuations.The outer layer of the platform was constructed with two sets of rectangular electromagnetic coils,which generated the required magnetic fi eld when current was applied.The inner layer was a closed cabin in which radiators were distributed such that the temperature of the experimental space inside the cabin could be controlled,by energy exchange between the radiators and a thermal controller through the fl owing liquid.A high-precision hexapod was used to simulate the tilt-related eff ect.The platform was capable of adjusting temperatures within a dynamic range of 0℃-70℃ at a resolution of 0.01℃.The noise of the power-spectrum density when the cabin was set to room temperature was measured as 0.03℃/Hz^(1/2) at 1 mHz.The magnetic field simulation had a dynamic range of±300μT and stability of 20 nT.The resolution of the ground-tilt simulation was 1 arc s.The inner space of the platform had a volume of approximately 5 m^(3),which is sufficient for most types of instruments to be tested for a general environmental coupling effect.To illustrate the application of the platform,a dual-axis inclinometer was built and tested carefully with the platform,and the accuracy of the calibration factors was found to be signifi cantly improved.展开更多
Comparing and analyzing some volume deformation measuring means for cement-based materials at home and abroad, a continuous online monitor of cement-based material volume deformation in multiple environments is develo...Comparing and analyzing some volume deformation measuring means for cement-based materials at home and abroad, a continuous online monitor of cement-based material volume deformation in multiple environments is developed. The device is designed based on the environmental simulation technology, micro-distance measuring technology of laser and eddy current, and transmission agent online monitoring the deformation of multi-group samples. This device can be used widely, such as glass, ceramics, walling material, and so on, with high precision, low testing cost, and intellectualization.展开更多
A brief review of the basic terminology on simulation, simulation life-cycle activities such as model-based activities, behavior-oriented activities, and quality assurance activities is given. Then, the challenges and...A brief review of the basic terminology on simulation, simulation life-cycle activities such as model-based activities, behavior-oriented activities, and quality assurance activities is given. Then, the challenges and opportunities for the advancement of the state-of-the-art in simulation environments are discussed under the following headings: modelling environments, simulation environments, mixed simulation environments, and comprehensive simulation environments.展开更多
Greater complexity and interconnectivity across systems embracing electrical power technologies has meant that cyber-security issues have attracted significant attention. In this paper a simulation environment for int...Greater complexity and interconnectivity across systems embracing electrical power technologies has meant that cyber-security issues have attracted significant attention. In this paper a simulation environment for intrusion detection system in IEC 61850 standard-based substation automation system is provided to test simulated attacks on IEDs (intelligent electronic devices). Intrusion detection is the process of detecting malicious attacker, so it is an effective and mature security mechanism to protect electrical facility. However, it is not harnessed when securing IEC 61850 automated substation. To prove the detection capability of the system testing environment was developed to analyze and test attacks simulated with different test cases. It shows that the simulation environment works accordingly to various network traffic scenarios and eventually proves the functionality of intrusion detection system to be later deployed in the real IEC 61850 based substation automation system site.展开更多
As computer simulation increasingly supports engine er ing design and manufacture, the requirement for a computer software environment providing an integration platform for computational engineering software increas e...As computer simulation increasingly supports engine er ing design and manufacture, the requirement for a computer software environment providing an integration platform for computational engineering software increas es. A key component of an integrated environment is the use of computational eng ineering to assist and support solutions for complex design. Computer methods fo r structural, flow and thermal analysis are well developed and have been used in design for many years. Many software packages are now available which provi de an advanced capability. However, they are not designed for modelling of powde r forming processes. This paper describes the powder compaction software (PCS_SU T), which is designed for pre- and post-processing for computational simulatio n of the process compaction of powder. In the PCS_SUT software, the adaptive analysis of transient metal powder forming process is simulated by the finite element method based on deformation theories . The error estimates and adaptive remeshing schemes are applied for updated co -ordinate analysis. A generalized Newmark scheme is used for the time domain di scretization and the final nonlinear equations are solved by a Newton-Raphson p rocedure. An incremental elasto-plastic material model is used to simulate the compaction process. To describe the constitutive model of nonlinear behaviour of powder materials, a combination of Mohr-Coulomb and elliptical yield cap model is applied. This model reflects the yielding, frictional and densification char acteristics of powder along with strain and geometrical hardening which occurs d uring the compaction process. A hardening rule is used to define the dependence of the yield surface on the degree of plastic straining. A plasticity theory for friction is employed in the treatment of the powder-tooling interface. The inv olvement of two different materials, which have contact and relative movement in relation to each other, must be considered. A special formulation for friction modelling is coupled with a material formulation. The interface behaviour betwee n the die and the powder is modelled by using an interface element mesh. In the present paper, we have demonstrated pre- and post-processor finite elem ent software, written in Visual Basic, to generate the graphical model and visua lly display the computed results. The software consist of three main part: · Pre-processor: It is used to create the model, generate an app ropriate finite element grid, apply the appropriate boundary conditions, and vie w the total model. The geometric model can be used to associate the mesh with th e physical attributes such as element properties, material properties, or loads and boundary conditions. · Analysis: It can deal with two-dimensional and axi-symmetric applications for linear and non-linear behaviour of material in static and dyna mic analyses. Both triangular and quadrilateral elements are available in the e lement library, including 3-noded, 6-noded and 7-noded (T6B1) triangles and 4 -noded, 8-noded and 9-noded quadrilaterals. The direct implicit algorithm bas ed on the generalized Newmark scheme is used for the time integration and an aut omatic time step control facility is provided. For non-linear iteration, choice s among fully or modified Newton-Raphson method and quasi-Newton method, using the initial stiffness method, Davidon inverse method or BFGS inverse method, ar e possible. · Post-processor: It provides visualization of the computed resu lts, when the finite element model and analysis have been completed. Post-proce ssing is vital to allow the appropriate interpretation of the completed results of the finite element analysis. It provides the visual means to interpret the va st amounts of computed results generated. Finally, the powder behaviour during the compaction of a multi-level component is numerically simulated by the PCS_SUT software, as shown in Fig.1. The predict ive compaction forces at different displacements are computed and compared with the available experimental展开更多
This paper presents the latest status of the open source advanced TCAD simulator called Nano-Electronic Simulation Software(NESS)which is currently under development at the Device Modeling Group of the University of G...This paper presents the latest status of the open source advanced TCAD simulator called Nano-Electronic Simulation Software(NESS)which is currently under development at the Device Modeling Group of the University of Glasgow.NESS is designed with the main aim to provide an open,flexible,and easy to use simulation environment where users are able not only to perform numerical simulations but also to develop and implement new simulation methods and models.Currently,NESS is organized into two main components:the structure generator and a collection of different numerical solvers;which are linked to supporting components such as an effective mass extractor and materials database.This paper gives a brief overview of each of the components by describing their main capabilities,structure,and theory behind each one of them.Moreover,to illustrate the capabilities of each component,here we have given examples considering various device structures,architectures,materials,etc.at multiple simulation conditions.We expect that NESS will prove to be a great tool for both conventional as well as exploratory device research programs and projects.展开更多
Vegetation plays a key role in improving wind environment of residential districts,and is helpful for creating a comfortable and beautiful living environment.The optimal design of vegetation for wind environment impro...Vegetation plays a key role in improving wind environment of residential districts,and is helpful for creating a comfortable and beautiful living environment.The optimal design of vegetation for wind environment improvement in winter was investigated by carrying out field experiments in Heqingyuan residential area in Beijing,and after that,numerical simulation with SPOTE(simulation platform for outdoor thermal environment) experiments for outdoor thermal environment of vegetation was adopted for comparison.The conclusions were summarized as follows:1) By comparing the experimental data with simulation results,it could be concluded that the wind field simulated was consistent with the actual wind field,and the flow distribution impacted by vegetation could be accurately reflected;2) The wind velocity with vegetation was lower than that without vegetation,and the wind velocity was reduced by 46%;3) By adjusting arrangement and types of vegetation in the regions with excessively large wind velocity,the pedestrian-level wind velocity could be obviously improved through the simulation and comparison.展开更多
The aim of this paper is to analyze the change in the active structure of lignite during the process of lowtemperature oxidation by constructing a molecular structure model for lignite. Using quantum computation combi...The aim of this paper is to analyze the change in the active structure of lignite during the process of lowtemperature oxidation by constructing a molecular structure model for lignite. Using quantum computation combined with experimental results of proximate analysis, ultimate analysis, Fourier transform infrared spectroscopy(FTIR) and X-ray photoelectron spectroscopy(XPS), a structural model for the large molecular structure was constructed. By analyzing the bond lengths in the model molecule, the evolution law for the active structure of lignite was predicted for the process of low-temperature oxidation. In low-temperature oxidation,alkanes and hydroxyls are the primary active structures observed in lignite, though ether may also react. These active functional groups react with oxygen to release heat, thereby speeding up the reaction between coal and oxygen. Finally, the content of various functional groups in the process of lignite low-temperature oxidation was analyzed by infrared analysis, and the accuracy of the model was verified.展开更多
The use of simulation based training in endoscopy hasbeen increasingly described,simulation has the potential reduce the harm caused to patients by novicesperforming procedures,increase efficiency by reducingthe time ...The use of simulation based training in endoscopy hasbeen increasingly described,simulation has the potential reduce the harm caused to patients by novicesperforming procedures,increase efficiency by reducingthe time needed to train in the clinical environment andincrease the opportunity to repeatedly practice rareprocedures as well as allowing the assessment of performance.Simulators can consist of mechanical devices,employ cadaveric animal tissue or use virtual realitytechnology.Simulators have been used to teach upperand lower gastrointestinal endoscopy as well as interventional procedures.This review reviews the currentlyavailable endoscopic simulators,and the evidence fortheir efficacy,demonstrating that the ability of simulators to differentiate between novice and expert endoscopists is well established.There is limited evidencefor improved patient outcome as a result of simulationtraining.We also consider how the environment withinwhich a simulation is placed can be manipulated toalter the learning achieved,broadening the scope ofsimulation to develop communication as well as technical skills.Finally the implications for future practice areconsidered; technology is likely improve the fidelity of simulators,increasing the potential for simulation to improve patient outcomes.The impact of the simulation environment,and the correct place of simulation within the training curriculum are both issues which need addressing.展开更多
In order to investigate the effect of sintering temperature on aging properties and mechanical properties of 3Y-TZP dental ceramic in simulated oral environment, 3Y-TZP nanopowder compacts were pressurelessly sintered...In order to investigate the effect of sintering temperature on aging properties and mechanical properties of 3Y-TZP dental ceramic in simulated oral environment, 3Y-TZP nanopowder compacts were pressurelessly sintered at 1 350℃, 1 400 ℃, 1 450 ℃,1 500 ℃, respectively, then were treated by soaking in artificial saliva (65 ℃, pH=7) for two months. The treated specimens sintered at 1 350 ℃ showed there was no phase transformation but whose strength and toughnesswere significantly improved (P〈0.05), while those sintered at 1 400 ℃- 1 500 ℃ revealed a small amount of phase transformation and insignificant mechanical reinforcement (P〉0.05). No microcracks were detected but increment in lattice volume was found in all specimens. Lowering sintering temperature favors aging resistance and mechanical reinforcement of 3Y-TZP in a simulated oral environment.展开更多
In this paper, a class of chemostat systems with simulate seasons Environment in the following form =(1+be(t)-s)Q+x(msa+s-k) =x(msa+s-k)-Qxis discussed. It is abstained that the system has not periodic solution when b...In this paper, a class of chemostat systems with simulate seasons Environment in the following form =(1+be(t)-s)Q+x(msa+s-k) =x(msa+s-k)-Qxis discussed. It is abstained that the system has not periodic solution when b=0; if b≠0 and b1 then system has 2 π periodic solution of system. globally asymptotically stable as mQ<μ *-1 and is unstable as mQ>μ *-1 and there exists at last one minimal 2 π periodic solution (s(t),x(t)) with \{x(t)>0,\}0<s(t)<s *(t).展开更多
In this paper, a new concept of simulation operating system (SIMOS) is described. A detailed definition of SIMOS is given, and two integrated simulation software (IPSOS and IMSS) are introduced based on SIMOS.
The objective of this paper is to design units with well-lighted environment and low-energy consumption in the apartment building. Their daylight and energy performance can be determined by the building shape and orie...The objective of this paper is to design units with well-lighted environment and low-energy consumption in the apartment building. Their daylight and energy performance can be determined by the building shape and orientation. The paper initially produced the results of illuminations and energy efficiency using the daylight and thermal simulations by Autodesk "ECOTECT". It then provided the comparison on simulation results of two type buildings: Flat-type and L-type apartment. The available options for the design incorporating the environmental performance have less flexibility in fiat-type apartments than in L-type ones. The best unit in the fiat apartment is fixed from -45 to 45 degrees rotation, however, that in the L-type one can change depending on rotating the building. Moreover, if the upper level units had the appropriate environment, the lower level could have larger window areas in order to meet those daylight performance needs. Results show that the facade design should have the different window areas depending on the location of each unit. It can assist in the comfort and low-energy consumption design by using simulation tools that achieve the more predictable understandings.展开更多
From the simulation software selection, meteorological data collection, model, boundary conditions, calculation setting and evaluation indicators, the paper summarize simulation method of wind, light and sound, summar...From the simulation software selection, meteorological data collection, model, boundary conditions, calculation setting and evaluation indicators, the paper summarize simulation method of wind, light and sound, summarize three kinds of environmental. The paper study on optimization analysis method of green building from four aspects of building orientation, architectural form, architectural layout and indoor environment, and puts forward the optimization scheme of the typical simulation analysis of simple questions; provide guidance for optimizing the design of green building. Finally, ECOTECT can adapt to the current domestic engineering design and consulting on green building simulation and design requirements, and has a broad application prospect.展开更多
文摘A compact mirror-like ECR (electron cyclotron resonance) Plasma source for the ionosphere environment simulator was described for the fort time in China. The Overall sources system was composed of a 200 W 2.45 GHz microwave source, a coastal 3A./4 TEM-mode microwave resonance applicator, column and cylindrical Nd-Fe-P magnets, a quartz bell-shaped discharge chamber, a gas inlet system and a plasma-diffusing bore. The preliminary experiment demonstrated that ambi-polar diffusion plasma stream into the simulator (-500 mm long) formed an environment with following parameters: a plasma density ne of 104 cm-3 - 106 cm-3, an electron temperature Te < 5 eV at a pressure P of 10-1 Pa-10-3 Pa, a Plasma uniformity of > 80% over the experimental target with a 160-mm-in-diameter, satisfying primarily the requirement of simulating in a severe ionosphere environment.
文摘In the mid July, 2011, the GVU-600 space environment simulator developed by Bei-jing Institute of Spacecraft Environment Engineering of China Academy of Space Technology (CAST) under China
基金Funded by the Distinguished Young Scholars of NSFC(51125023)the Major State Basic Research Development Programof China(2011CB013405)the Natural Science Foundation of Beijing City(3120001)
文摘In order to investigate the effect of space environmental factors on spacecraft materials, a ground-based simulation facility for space atomic oxygen(AO) irradiation was developed in our laboratory. Some Kapton film samples were subjected to AO beam generated by this facility. The Kapton films before and after AO exposure were analyzed comparatively using optical microscopy, scanning electronic microscopy, atomic force microscopy, high-precision microbalance, and X-ray photoelectron spectroscopy. The experimental results indicate that the transmittance of Kapton film will be reduced by AO irradiation notably, and its color deepens from pale yellow to brown. Surface roughness of the AO-treated sample is already increased obviously after AO irradiation for 5 hours, and exhibits a flannel-like appearance after 15 hours’ exposure in AO beam. The imide rings and benzene rings in kapton molecule are partially decomposed, and some new bonds form during AO irradiation. The mass loss of kapton film increases linearly with the increase of AO fluence, which is resulted from the formation of volatile products, such as CO, CO2 and NOx. The breakage in structure and degradation in properties of AO-treated Kapton film can be attributed to the integrated effect ofimpaction and oxidization of AO beam. The test results agree well with the space flight experimental data.
基金supported by the Ministry of Science and Technology of China(2006BAJ04A01 and 2006BAJ03A04-01)
文摘Dynamic environmental testing is an effective means to study the energy and long-term hygrothermal performance of building enclosures. Southeast University is designing and building a large-scale dynamic environment simulation testing facility. It can simuhaneously and dynamically simulate temperature, relative humidity, infrared solar radiation, UV radiation, and precipitation. A transformation is needed to predict the energy and long-term hygrothermal performance of building enclosures under real service conditions using data obtained from accelerated tests.
基金The National Natural Science Foundation of China under contract No.41530962
文摘An understanding of the sedimentary environment in relation to its controlling factors is of great importance in coastal geomorphology,ecology,tourism and aquaculture studies.We attempt to deal with this issue,using a case study from the Xincun Lagoon,Hainan Island in southern China.For the study,surficial sediment samples were collected,together with hydrodynamic and bathymetric surveys,during August 2013.Numerical simulation was carried out to obtain high-spatial resolution tidal current data.The sediment samples were analyzed to derive mean grain size,sorting coefficient,skewness and kurtosis,together with the sand,silt and clay contents.The modern sedimentary environments were classified using system cluster and principal component analyses.Grain size analysis reveals that the sediments are characterized by extremely slightly sandy silty mud(ESSSM) and slightly silty sand(SSS),which are distributed in the central lagoon and near-shore shallow water areas,respectively.Mean grain size varies from 0 to 8.0Ф,with an average of 4.6Ф.The silt content is the highest,i.e.,52% on average,with the average contents of sand and clay being 43% and 5%,respectively.There exists a significant correlation between mean size and water depth,suggesting that the surficial sediments become finer with increasing water depth.Cluster analyses reveals two groups of samples.The first group is characterized by mean grain size of more than 5.5Ф,whilst the second group has mean grain size of below 3.5Ф.Further,these groups also have different correlations between mean grain size and the other grain size parameters.In terms of the tidal current,the average values of the root mean square velocity(RMSV) are 7.5 cm/s and 6.9 cm/s on springs and neaps,respectively.For the RMSVs that are higher than 4 cm/s,a significant positive correlation is found between the content of the 63–125 μm fraction and the RMSV,suggesting that the RMSV determines the variability of the very fine sand fraction.Based on system cluster and principal component analyses(PCA),the modern sedimentary environments are classified into three types according to the grain size parameters,RMSVs and water depth data.The results suggest the importance of grain size parameters and high-spatial resolution hydrodynamic data in differentiating the coastal sedimentary environments.
基金Funded by the National Natural Science Foundation of China(No.51171011)
文摘Corrosion behavior of 300M in neutralcorrosion environments containing Na Clsimulated by totalimmersion(TI),salt spraying(SS)and periodic immersion(PI),was investigated by surface analysis techniques,corrosion weight-loss method,and electrochemicalmeasurements.In totalimmersion environment,rust on the steelconsisted of a porous outer rust layer with main constituent of γ-Fe OOH,and an inner rust layer of dense Fe_3O_4 film with network broad cracks.In salt spraying environment,outer rust with main composition of γ-Fe OOH/α-Fe OOH/Fe_3O_4 was compact,and inner rust showed dense Fe_3O_4 film.Rust formed by periodic immersion exhibited a compact outer rust layer with constituent of α-Fe OOH/γ-Fe OOH/Fe_3O_4 and an inner rust layer with composition of α-Fe OOH/α-Fe_2O_3;inner rust showed a ultra-dense film adherent to the steel.The corrosion rate showed a rule of vss(salt spraying)〉vti(totalimmersion)〉〉vpi(periodic immersion)in 0-240 h,and vss≈vti?vpiin 240-720 h.The rust formed by periodic immersion was dense and compact,with stable electrochemicalproperties,and had excellent protection on the steel.Humidity and oxygen concentration in allthe environments played major roles in rust formation.
基金This work was supported by National Scientifi c Instrument Development Fund(No.ZDYZ2012-1-04)State Natural Sciences Fund(No.11235004,91636112,41474163).
文摘In this study,an environmental simulation platform(ETS-02)was constructed for high-precision geodesic instruments(e.g.,absolute/relative gravimeters and inclinometers),to test the disturbances caused by environmental fl uctuations.The outer layer of the platform was constructed with two sets of rectangular electromagnetic coils,which generated the required magnetic fi eld when current was applied.The inner layer was a closed cabin in which radiators were distributed such that the temperature of the experimental space inside the cabin could be controlled,by energy exchange between the radiators and a thermal controller through the fl owing liquid.A high-precision hexapod was used to simulate the tilt-related eff ect.The platform was capable of adjusting temperatures within a dynamic range of 0℃-70℃ at a resolution of 0.01℃.The noise of the power-spectrum density when the cabin was set to room temperature was measured as 0.03℃/Hz^(1/2) at 1 mHz.The magnetic field simulation had a dynamic range of±300μT and stability of 20 nT.The resolution of the ground-tilt simulation was 1 arc s.The inner space of the platform had a volume of approximately 5 m^(3),which is sufficient for most types of instruments to be tested for a general environmental coupling effect.To illustrate the application of the platform,a dual-axis inclinometer was built and tested carefully with the platform,and the accuracy of the calibration factors was found to be signifi cantly improved.
文摘Comparing and analyzing some volume deformation measuring means for cement-based materials at home and abroad, a continuous online monitor of cement-based material volume deformation in multiple environments is developed. The device is designed based on the environmental simulation technology, micro-distance measuring technology of laser and eddy current, and transmission agent online monitoring the deformation of multi-group samples. This device can be used widely, such as glass, ceramics, walling material, and so on, with high precision, low testing cost, and intellectualization.
文摘A brief review of the basic terminology on simulation, simulation life-cycle activities such as model-based activities, behavior-oriented activities, and quality assurance activities is given. Then, the challenges and opportunities for the advancement of the state-of-the-art in simulation environments are discussed under the following headings: modelling environments, simulation environments, mixed simulation environments, and comprehensive simulation environments.
文摘Greater complexity and interconnectivity across systems embracing electrical power technologies has meant that cyber-security issues have attracted significant attention. In this paper a simulation environment for intrusion detection system in IEC 61850 standard-based substation automation system is provided to test simulated attacks on IEDs (intelligent electronic devices). Intrusion detection is the process of detecting malicious attacker, so it is an effective and mature security mechanism to protect electrical facility. However, it is not harnessed when securing IEC 61850 automated substation. To prove the detection capability of the system testing environment was developed to analyze and test attacks simulated with different test cases. It shows that the simulation environment works accordingly to various network traffic scenarios and eventually proves the functionality of intrusion detection system to be later deployed in the real IEC 61850 based substation automation system site.
文摘As computer simulation increasingly supports engine er ing design and manufacture, the requirement for a computer software environment providing an integration platform for computational engineering software increas es. A key component of an integrated environment is the use of computational eng ineering to assist and support solutions for complex design. Computer methods fo r structural, flow and thermal analysis are well developed and have been used in design for many years. Many software packages are now available which provi de an advanced capability. However, they are not designed for modelling of powde r forming processes. This paper describes the powder compaction software (PCS_SU T), which is designed for pre- and post-processing for computational simulatio n of the process compaction of powder. In the PCS_SUT software, the adaptive analysis of transient metal powder forming process is simulated by the finite element method based on deformation theories . The error estimates and adaptive remeshing schemes are applied for updated co -ordinate analysis. A generalized Newmark scheme is used for the time domain di scretization and the final nonlinear equations are solved by a Newton-Raphson p rocedure. An incremental elasto-plastic material model is used to simulate the compaction process. To describe the constitutive model of nonlinear behaviour of powder materials, a combination of Mohr-Coulomb and elliptical yield cap model is applied. This model reflects the yielding, frictional and densification char acteristics of powder along with strain and geometrical hardening which occurs d uring the compaction process. A hardening rule is used to define the dependence of the yield surface on the degree of plastic straining. A plasticity theory for friction is employed in the treatment of the powder-tooling interface. The inv olvement of two different materials, which have contact and relative movement in relation to each other, must be considered. A special formulation for friction modelling is coupled with a material formulation. The interface behaviour betwee n the die and the powder is modelled by using an interface element mesh. In the present paper, we have demonstrated pre- and post-processor finite elem ent software, written in Visual Basic, to generate the graphical model and visua lly display the computed results. The software consist of three main part: · Pre-processor: It is used to create the model, generate an app ropriate finite element grid, apply the appropriate boundary conditions, and vie w the total model. The geometric model can be used to associate the mesh with th e physical attributes such as element properties, material properties, or loads and boundary conditions. · Analysis: It can deal with two-dimensional and axi-symmetric applications for linear and non-linear behaviour of material in static and dyna mic analyses. Both triangular and quadrilateral elements are available in the e lement library, including 3-noded, 6-noded and 7-noded (T6B1) triangles and 4 -noded, 8-noded and 9-noded quadrilaterals. The direct implicit algorithm bas ed on the generalized Newmark scheme is used for the time integration and an aut omatic time step control facility is provided. For non-linear iteration, choice s among fully or modified Newton-Raphson method and quasi-Newton method, using the initial stiffness method, Davidon inverse method or BFGS inverse method, ar e possible. · Post-processor: It provides visualization of the computed resu lts, when the finite element model and analysis have been completed. Post-proce ssing is vital to allow the appropriate interpretation of the completed results of the finite element analysis. It provides the visual means to interpret the va st amounts of computed results generated. Finally, the powder behaviour during the compaction of a multi-level component is numerically simulated by the PCS_SUT software, as shown in Fig.1. The predict ive compaction forces at different displacements are computed and compared with the available experimental
基金the European Union Horizon 2020 research and innovation programme under grant agreement No.688101 SUPERAID7 and has received further funding from EPSRC UKRI Innovation Fellowship scheme under grant agreement No.EP/S001131/1(QSEE),No.EP/P009972/1(QUANTDEVMOD)and No.EP/S000259/1(Variability PDK for design based research on FPGA/neuro computing)and from H2020-FETOPEN-2019 scheme under grant agreement No.862539-Electromed-FET OPEN.
文摘This paper presents the latest status of the open source advanced TCAD simulator called Nano-Electronic Simulation Software(NESS)which is currently under development at the Device Modeling Group of the University of Glasgow.NESS is designed with the main aim to provide an open,flexible,and easy to use simulation environment where users are able not only to perform numerical simulations but also to develop and implement new simulation methods and models.Currently,NESS is organized into two main components:the structure generator and a collection of different numerical solvers;which are linked to supporting components such as an effective mass extractor and materials database.This paper gives a brief overview of each of the components by describing their main capabilities,structure,and theory behind each one of them.Moreover,to illustrate the capabilities of each component,here we have given examples considering various device structures,architectures,materials,etc.at multiple simulation conditions.We expect that NESS will prove to be a great tool for both conventional as well as exploratory device research programs and projects.
基金Project(50878111) supported by the National Natural Science Foundation of China
文摘Vegetation plays a key role in improving wind environment of residential districts,and is helpful for creating a comfortable and beautiful living environment.The optimal design of vegetation for wind environment improvement in winter was investigated by carrying out field experiments in Heqingyuan residential area in Beijing,and after that,numerical simulation with SPOTE(simulation platform for outdoor thermal environment) experiments for outdoor thermal environment of vegetation was adopted for comparison.The conclusions were summarized as follows:1) By comparing the experimental data with simulation results,it could be concluded that the wind field simulated was consistent with the actual wind field,and the flow distribution impacted by vegetation could be accurately reflected;2) The wind velocity with vegetation was lower than that without vegetation,and the wind velocity was reduced by 46%;3) By adjusting arrangement and types of vegetation in the regions with excessively large wind velocity,the pedestrian-level wind velocity could be obviously improved through the simulation and comparison.
基金Supported by the Fundamental Research Funds for the Central Universities(2017XKQY066)
文摘The aim of this paper is to analyze the change in the active structure of lignite during the process of lowtemperature oxidation by constructing a molecular structure model for lignite. Using quantum computation combined with experimental results of proximate analysis, ultimate analysis, Fourier transform infrared spectroscopy(FTIR) and X-ray photoelectron spectroscopy(XPS), a structural model for the large molecular structure was constructed. By analyzing the bond lengths in the model molecule, the evolution law for the active structure of lignite was predicted for the process of low-temperature oxidation. In low-temperature oxidation,alkanes and hydroxyls are the primary active structures observed in lignite, though ether may also react. These active functional groups react with oxygen to release heat, thereby speeding up the reaction between coal and oxygen. Finally, the content of various functional groups in the process of lignite low-temperature oxidation was analyzed by infrared analysis, and the accuracy of the model was verified.
文摘The use of simulation based training in endoscopy hasbeen increasingly described,simulation has the potential reduce the harm caused to patients by novicesperforming procedures,increase efficiency by reducingthe time needed to train in the clinical environment andincrease the opportunity to repeatedly practice rareprocedures as well as allowing the assessment of performance.Simulators can consist of mechanical devices,employ cadaveric animal tissue or use virtual realitytechnology.Simulators have been used to teach upperand lower gastrointestinal endoscopy as well as interventional procedures.This review reviews the currentlyavailable endoscopic simulators,and the evidence fortheir efficacy,demonstrating that the ability of simulators to differentiate between novice and expert endoscopists is well established.There is limited evidencefor improved patient outcome as a result of simulationtraining.We also consider how the environment withinwhich a simulation is placed can be manipulated toalter the learning achieved,broadening the scope ofsimulation to develop communication as well as technical skills.Finally the implications for future practice areconsidered; technology is likely improve the fidelity of simulators,increasing the potential for simulation to improve patient outcomes.The impact of the simulation environment,and the correct place of simulation within the training curriculum are both issues which need addressing.
基金Funded by the National High Technology Research and Development Program of China (No.2006AA03Z440)
文摘In order to investigate the effect of sintering temperature on aging properties and mechanical properties of 3Y-TZP dental ceramic in simulated oral environment, 3Y-TZP nanopowder compacts were pressurelessly sintered at 1 350℃, 1 400 ℃, 1 450 ℃,1 500 ℃, respectively, then were treated by soaking in artificial saliva (65 ℃, pH=7) for two months. The treated specimens sintered at 1 350 ℃ showed there was no phase transformation but whose strength and toughnesswere significantly improved (P〈0.05), while those sintered at 1 400 ℃- 1 500 ℃ revealed a small amount of phase transformation and insignificant mechanical reinforcement (P〉0.05). No microcracks were detected but increment in lattice volume was found in all specimens. Lowering sintering temperature favors aging resistance and mechanical reinforcement of 3Y-TZP in a simulated oral environment.
文摘In this paper, a class of chemostat systems with simulate seasons Environment in the following form =(1+be(t)-s)Q+x(msa+s-k) =x(msa+s-k)-Qxis discussed. It is abstained that the system has not periodic solution when b=0; if b≠0 and b1 then system has 2 π periodic solution of system. globally asymptotically stable as mQ<μ *-1 and is unstable as mQ>μ *-1 and there exists at last one minimal 2 π periodic solution (s(t),x(t)) with \{x(t)>0,\}0<s(t)<s *(t).
文摘In this paper, a new concept of simulation operating system (SIMOS) is described. A detailed definition of SIMOS is given, and two integrated simulation software (IPSOS and IMSS) are introduced based on SIMOS.
文摘The objective of this paper is to design units with well-lighted environment and low-energy consumption in the apartment building. Their daylight and energy performance can be determined by the building shape and orientation. The paper initially produced the results of illuminations and energy efficiency using the daylight and thermal simulations by Autodesk "ECOTECT". It then provided the comparison on simulation results of two type buildings: Flat-type and L-type apartment. The available options for the design incorporating the environmental performance have less flexibility in fiat-type apartments than in L-type ones. The best unit in the fiat apartment is fixed from -45 to 45 degrees rotation, however, that in the L-type one can change depending on rotating the building. Moreover, if the upper level units had the appropriate environment, the lower level could have larger window areas in order to meet those daylight performance needs. Results show that the facade design should have the different window areas depending on the location of each unit. It can assist in the comfort and low-energy consumption design by using simulation tools that achieve the more predictable understandings.
文摘From the simulation software selection, meteorological data collection, model, boundary conditions, calculation setting and evaluation indicators, the paper summarize simulation method of wind, light and sound, summarize three kinds of environmental. The paper study on optimization analysis method of green building from four aspects of building orientation, architectural form, architectural layout and indoor environment, and puts forward the optimization scheme of the typical simulation analysis of simple questions; provide guidance for optimizing the design of green building. Finally, ECOTECT can adapt to the current domestic engineering design and consulting on green building simulation and design requirements, and has a broad application prospect.