The large excess of solid waste generated in cities is a result of population growth and economic development. Properly managing this municipal solid waste (MSW) is a challenge, mainly in underdeveloped and developing...The large excess of solid waste generated in cities is a result of population growth and economic development. Properly managing this municipal solid waste (MSW) is a challenge, mainly in underdeveloped and developing countries where financial concerns are an added problem. From the environmental point of view, a major issue is properly disposing MSW taking into consideration a wide range of factors, and working with different spatial data. In this study, we used geographic information system (GIS) to perform multi-criteria decision analysis (MCDA) conducted by analytical hierarchy process (AHP). The development of the environmental impact susceptibility model (EISM) for municipal solid waste disposal sites (MSWDS) applied to the state of Sao Paulo, Brazil considered factors such as geology, pedology, geomorphology, water resources, and climate represented by fifteen associated sub-factors. The results indicated that more than 82% of Sao Paulo’s territory is situated in areas with very low, low, and medium environmental impact susceptibility categories. However, in the remaining 18% of the state land area, 85 landfills are located in areas with high and very high environmental impact susceptibility categories. These results are alarming because these 85 landfills receive approximately 17,886 tons of MSW on a daily basis, which corresponds to 46% of all municipal solid waste disposed in Sao Paulo state. Therefore, decision makers, urban planners and policymakers could use the findings of the EISM towards mitigating the environmental impacts caused by MSWDS.展开更多
The solidifying effect of cement addition on municipal solid waste incineration fly ash (MSWFA for short,collected from the gas exhaust system of MSW incinerator),the interaction of MSWFA with cement and water and the...The solidifying effect of cement addition on municipal solid waste incineration fly ash (MSWFA for short,collected from the gas exhaust system of MSW incinerator),the interaction of MSWFA with cement and water and the leaching of heavy metals from cement solidified MSWFA are investigated.The main results show that:(1) when MSWFA is mixed with cement and water,H 2 evolution,the formation and volume expansion of AFt will take place,the volume expansion can be reduced by ground rice husk ash addition;(2) heavy metals do leach from cement solidified MSWFA and at lower pH more leaching will occur;(3) compared with cement-solidified fly ash,the leachate of solidified MSWFA is with higher heavy metal contents;(4) with the increment of cement addition leached heavy metals are decreased;and (5) concentrations of Zn,Mn,Cu and Cd in all the leachates can meet the relevant Standards of Japan,but as the regulations for soil and groundwater protection of Japan are concerned,precautions against the leaching of Pb,Cl - and Cr 6+ and so on are needed.展开更多
This study presents the environmental impact assessment of an absorption heat transformer designed to recover 1 kW of thermal energy from each 2 kW of waste heat supplies. The net contribution of the heat transformer ...This study presents the environmental impact assessment of an absorption heat transformer designed to recover 1 kW of thermal energy from each 2 kW of waste heat supplies. The net contribution of the heat transformer is a load avoided of 0.665 kg CO2 equivalents;the recovery process avoids 0.729 kg CO2 equivalents and the major contribution to the environment impacts is the pumping process with 0.0437 kg CO2 equivalents for each 1 kWh recovered. The study results show that absorption heat transformer is a good environmental option because it produces useful energy from waste heat and the final result is an environmental impact diminution.展开更多
Lift cycle assessment(LCA)methodology was applied to evaluating and comparing two waste acid disposal processes in zinc smelting.The results indicate that environmental impacts of gas−liquid vulcanization technologies...Lift cycle assessment(LCA)methodology was applied to evaluating and comparing two waste acid disposal processes in zinc smelting.The results indicate that environmental impacts of gas−liquid vulcanization technologies are human toxicity,abiotic depletion potential,and global warming risk,which are mainly caused in neutralizing−evaporating−crystallization unit and electrodialysis unit.As for traditional lime neutralization method,vulcanization unit is the main factor.In this regard,the total environmental impact of traditional lime neutralization method is much higher than that of gas−liquid vulcanization technologies.Furthermore,the sensitive analysis shows that electricity and sodium sulfide(60%)are sensitive factors in two waste acid disposal technologies.In addition,the total cost of disposing a functional unit waste acid in traditional lime neutralization process is nearly 27 times that of the gas−liquid vulcanization waste acid disposal technologies.展开更多
One of the environmental liabilities left by abandoned urban waste disposal sites, closed without the correct procedures, is the risk of exposure to their effluents, whose emissions may occur for many years. The purpo...One of the environmental liabilities left by abandoned urban waste disposal sites, closed without the correct procedures, is the risk of exposure to their effluents, whose emissions may occur for many years. The purpose of the proposed methodology, referred to as SISTAVAFE, an assessment system of a closed landfill, is to contribute in the risk assess- ment of exposure to leachate as well as to suggest procedures for site monitoring, according to different levels of care and urgency. The method is based on four matrices that help make an initial evaluation of the risk source, potential target and the surface and underground environmental paths. This paper only addresses the contamination caused by liquid effluents.展开更多
Urban waste management and particularly dumpsites represents one of the most significant problems tot the long term protection of public health and environment in Albania. All waste management options, including landf...Urban waste management and particularly dumpsites represents one of the most significant problems tot the long term protection of public health and environment in Albania. All waste management options, including landfilling, involve an element of risk to human health. This article addresses the question, if sources of emissions from Sharra landfill lead theoretically to public exposures exceeding health criteria? This question is approached using an exposure pathway analysis framework, which link a source of one or more harmful pollutants at a site with a human receptor that inhales the pollutant. The risk posed to human health from HCHO (formaldehyde) and dioxin is estimated for on-site and off-site receptors in Sharra landfill. For on-site receptors, the average risk to get harm through the inhalation pathway from HCHO is in the range of 20 times to 300 times greater than allowed risk value, while for off-site receptors the average risk is in the range of 10 times to 180 times greater. While for dioxin the risk is in the range from 50 to 600 for on-site receptors and 10 to 35 for off-site receptors, times greater than often allowed risk.展开更多
The overall objective of this study was to establish the effects of steel industrial effluent on Nairobi metropolitan water system and its impact to the society. The study sought to identify various types of wastes pr...The overall objective of this study was to establish the effects of steel industrial effluent on Nairobi metropolitan water system and its impact to the society. The study sought to identify various types of wastes produced by factories, assess how the waste generated is managed and disposed</span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">,</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> examine the effects of effluent discharge on Nairobi River and finally propose mitigation measures. The research adopted a qualitative design and employed a number of methods: direct observations, document reviews to content analysis of the past studies, which in the end generated invaluable data. The study revealed that there are four categories of waste generated</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">:</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> solid waste, liquid waste, footbath chemicals as well as thermal wastes. It was also found that waste management in place w</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">as</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> not effective enough leading to water and soil pollution. Other causes of pollution were found out to emanate from gasses contamination to the air and chemicals used during steel processing. The findings will inform the community of the harmful effects of untreated water and how it impacts on their health and productivity. It will also help the stakeholders in the environmental conservation to articulate issues of policy and influence agenda setting in the national and sub-national levels.展开更多
文摘The large excess of solid waste generated in cities is a result of population growth and economic development. Properly managing this municipal solid waste (MSW) is a challenge, mainly in underdeveloped and developing countries where financial concerns are an added problem. From the environmental point of view, a major issue is properly disposing MSW taking into consideration a wide range of factors, and working with different spatial data. In this study, we used geographic information system (GIS) to perform multi-criteria decision analysis (MCDA) conducted by analytical hierarchy process (AHP). The development of the environmental impact susceptibility model (EISM) for municipal solid waste disposal sites (MSWDS) applied to the state of Sao Paulo, Brazil considered factors such as geology, pedology, geomorphology, water resources, and climate represented by fifteen associated sub-factors. The results indicated that more than 82% of Sao Paulo’s territory is situated in areas with very low, low, and medium environmental impact susceptibility categories. However, in the remaining 18% of the state land area, 85 landfills are located in areas with high and very high environmental impact susceptibility categories. These results are alarming because these 85 landfills receive approximately 17,886 tons of MSW on a daily basis, which corresponds to 46% of all municipal solid waste disposed in Sao Paulo state. Therefore, decision makers, urban planners and policymakers could use the findings of the EISM towards mitigating the environmental impacts caused by MSWDS.
文摘The solidifying effect of cement addition on municipal solid waste incineration fly ash (MSWFA for short,collected from the gas exhaust system of MSW incinerator),the interaction of MSWFA with cement and water and the leaching of heavy metals from cement solidified MSWFA are investigated.The main results show that:(1) when MSWFA is mixed with cement and water,H 2 evolution,the formation and volume expansion of AFt will take place,the volume expansion can be reduced by ground rice husk ash addition;(2) heavy metals do leach from cement solidified MSWFA and at lower pH more leaching will occur;(3) compared with cement-solidified fly ash,the leachate of solidified MSWFA is with higher heavy metal contents;(4) with the increment of cement addition leached heavy metals are decreased;and (5) concentrations of Zn,Mn,Cu and Cd in all the leachates can meet the relevant Standards of Japan,but as the regulations for soil and groundwater protection of Japan are concerned,precautions against the leaching of Pb,Cl - and Cr 6+ and so on are needed.
文摘This study presents the environmental impact assessment of an absorption heat transformer designed to recover 1 kW of thermal energy from each 2 kW of waste heat supplies. The net contribution of the heat transformer is a load avoided of 0.665 kg CO2 equivalents;the recovery process avoids 0.729 kg CO2 equivalents and the major contribution to the environment impacts is the pumping process with 0.0437 kg CO2 equivalents for each 1 kWh recovered. The study results show that absorption heat transformer is a good environmental option because it produces useful energy from waste heat and the final result is an environmental impact diminution.
基金the National Key R&D Program of China(Nos.2018YFC1903304,2019YFC1907405)National Natural Science Foundation of China(No.51904354).
文摘Lift cycle assessment(LCA)methodology was applied to evaluating and comparing two waste acid disposal processes in zinc smelting.The results indicate that environmental impacts of gas−liquid vulcanization technologies are human toxicity,abiotic depletion potential,and global warming risk,which are mainly caused in neutralizing−evaporating−crystallization unit and electrodialysis unit.As for traditional lime neutralization method,vulcanization unit is the main factor.In this regard,the total environmental impact of traditional lime neutralization method is much higher than that of gas−liquid vulcanization technologies.Furthermore,the sensitive analysis shows that electricity and sodium sulfide(60%)are sensitive factors in two waste acid disposal technologies.In addition,the total cost of disposing a functional unit waste acid in traditional lime neutralization process is nearly 27 times that of the gas−liquid vulcanization waste acid disposal technologies.
文摘One of the environmental liabilities left by abandoned urban waste disposal sites, closed without the correct procedures, is the risk of exposure to their effluents, whose emissions may occur for many years. The purpose of the proposed methodology, referred to as SISTAVAFE, an assessment system of a closed landfill, is to contribute in the risk assess- ment of exposure to leachate as well as to suggest procedures for site monitoring, according to different levels of care and urgency. The method is based on four matrices that help make an initial evaluation of the risk source, potential target and the surface and underground environmental paths. This paper only addresses the contamination caused by liquid effluents.
文摘Urban waste management and particularly dumpsites represents one of the most significant problems tot the long term protection of public health and environment in Albania. All waste management options, including landfilling, involve an element of risk to human health. This article addresses the question, if sources of emissions from Sharra landfill lead theoretically to public exposures exceeding health criteria? This question is approached using an exposure pathway analysis framework, which link a source of one or more harmful pollutants at a site with a human receptor that inhales the pollutant. The risk posed to human health from HCHO (formaldehyde) and dioxin is estimated for on-site and off-site receptors in Sharra landfill. For on-site receptors, the average risk to get harm through the inhalation pathway from HCHO is in the range of 20 times to 300 times greater than allowed risk value, while for off-site receptors the average risk is in the range of 10 times to 180 times greater. While for dioxin the risk is in the range from 50 to 600 for on-site receptors and 10 to 35 for off-site receptors, times greater than often allowed risk.
文摘The overall objective of this study was to establish the effects of steel industrial effluent on Nairobi metropolitan water system and its impact to the society. The study sought to identify various types of wastes produced by factories, assess how the waste generated is managed and disposed</span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">,</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> examine the effects of effluent discharge on Nairobi River and finally propose mitigation measures. The research adopted a qualitative design and employed a number of methods: direct observations, document reviews to content analysis of the past studies, which in the end generated invaluable data. The study revealed that there are four categories of waste generated</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">:</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> solid waste, liquid waste, footbath chemicals as well as thermal wastes. It was also found that waste management in place w</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">as</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> not effective enough leading to water and soil pollution. Other causes of pollution were found out to emanate from gasses contamination to the air and chemicals used during steel processing. The findings will inform the community of the harmful effects of untreated water and how it impacts on their health and productivity. It will also help the stakeholders in the environmental conservation to articulate issues of policy and influence agenda setting in the national and sub-national levels.