In order to explore the substitution substrate for rice seedling on upland fields,this paper uses spent mushroom substrate to study the physical and chemical properties of substrate,enzymic activity and number of till...In order to explore the substitution substrate for rice seedling on upland fields,this paper uses spent mushroom substrate to study the physical and chemical properties of substrate,enzymic activity and number of tillers during the cultivation of rice seedling on upland fields.The results show that at the three stages of rice seedling cultivation( two-leaf stage,three-leaf stage,four-leaf stage),the content of organic matter and EC in spent mushroom substrate is higher than in the control soil,p H is within the range suitable for the growth of rice,and other nutrients( total nitrogen,total phosphorus,total potassium,available nitrogen,available phosphorus) are slightly different in different periods;except phosphatase,there are significant differences in urease,catalase and sucrase between spent mushroom substrate and the control soil; the number of tillers under spent mushroom substrate is larger than under the control.展开更多
In order to achieve the transformation from the conventional soil-covering cultivation of Tricholoma giganteum with bags to the soilless cultivation with bottles and understand the mechanism of primordium formation of...In order to achieve the transformation from the conventional soil-covering cultivation of Tricholoma giganteum with bags to the soilless cultivation with bottles and understand the mechanism of primordium formation of Tricholoma giganteum,with Tricholoma giganteum mycelia as experimental materials,this paper studied the effect of different fruiting treatments on the activity of three enzymes in different time.The results showed that from the mycelial recovery to primardial formation and budding under three treatment groups which could form primordium,the tyrosinase activity was relatively stable,and under two treatment groups which could not form primordium,the tyrosinase activity dropped after the rise and reached a maximum on the 9 th day,significantly higher than under the other three groups,indicating that too high tyrosinase inhibited primardial formation; the prolease and amylase activity was effectively activated before primardial formation,and the enzymic activity was significantly higher than under the two treatment groups which could not form primordium.展开更多
Point-of-care testing(POCT)is the practice of diagnosing and monitoring diseases where the patient is located,as opposed to traditional treatment conducted solely in a medical laboratory or other clinical setting.POCT...Point-of-care testing(POCT)is the practice of diagnosing and monitoring diseases where the patient is located,as opposed to traditional treatment conducted solely in a medical laboratory or other clinical setting.POCT has been less common in the recent past due to a lack of portable medical devices capable of facilitating effective medical testing.However,recent growth has occurred in this field due to advances in diagnostic technologies,device miniaturization,and progress in wearable electronics.Among these developments,electrochemical sensors have attracted interest in the POCT field due to their high sensitivity,compact size,and affordability.They are used in various applications,from disease diagnosis to health status monitoring.In this paper we explore recent advancements in electrochemical sensors,the methods of fabricating them,and the various types of sensing mechanisms that can be used.Furthermore,we delve into methods for immobilizing specific biorecognition elements,including enzymes,antibodies,and aptamers,onto electrode surfaces and how these sensors are used in real-world POCT settings.展开更多
Coronavirus disease 2019(COVID-19)is a disease that caused a global pandemic and is caused by infection of severe acute respiratory syndrome coronavirus 2 virus.It has affected over 768 million people worldwide,result...Coronavirus disease 2019(COVID-19)is a disease that caused a global pandemic and is caused by infection of severe acute respiratory syndrome coronavirus 2 virus.It has affected over 768 million people worldwide,resulting in approx-imately 6900000 deaths.High-risk groups,identified by the Centers for Disease Control and Prevention,include individuals with conditions like type 2 diabetes mellitus(T2DM),obesity,chronic lung disease,serious heart conditions,and chronic kidney disease.Research indicates that those with T2DM face a hei-ghtened susceptibility to COVID-19 and increased mortality compared to non-diabetic individuals.Examining the renin-angiotensin system(RAS),a vital regulator of blood pressure and pulmonary stability,reveals the significance of the angiotensin-converting enzyme(ACE)and ACE2 enzymes.ACE converts angiotensin-I to the vasoconstrictor angiotensin-II,while ACE2 counters this by converting angiotensin-II to angiotensin 1-7,a vasodilator.Reduced ACE2 exp-ression,common in diabetes,intensifies RAS activity,contributing to conditions like inflammation and fibrosis.Although ACE inhibitors and angiotensin receptor blockers can be therapeutically beneficial by increasing ACE2 levels,concerns arise regarding the potential elevation of ACE2 receptors on cell membranes,potentially facilitating COVID-19 entry.This review explored the role of the RAS/ACE2 mechanism in amplifying severe acute respiratory syndrome cor-onavirus 2 infection and associated complications in T2DM.Potential treatment strategies,including recombinant human ACE2 therapy,broad-spectrum antiviral drugs,and epigenetic signature detection,are discussed as promising avenues in the battle against this pandemic.展开更多
Coronavirus disease 2019(COVID-19),caused by the highly pathogenic severe acute respiratory syndrome coronavirus 2(SARS-CoV-2),primarily impacts the respiratory tract and can lead to severe outcomes such as acute resp...Coronavirus disease 2019(COVID-19),caused by the highly pathogenic severe acute respiratory syndrome coronavirus 2(SARS-CoV-2),primarily impacts the respiratory tract and can lead to severe outcomes such as acute respiratory distress syndrome,multiple organ failure,and death.Despite extensive studies on the pathogenicity of SARS-CoV-2,its impact on the hepatobiliary system remains unclear.While liver injury is commonly indicated by reduced albumin and elevated bilirubin and transaminase levels,the exact source of this damage is not fully understood.Proposed mechanisms for injury include direct cytotoxicity,collateral damage from inflammation,drug-induced liver injury,and ischemia/hypoxia.However,evidence often relies on blood tests with liver enzyme abnormalities.In this comprehensive review,we focused solely on the different histopathological manifestations of liver injury in COVID-19 patients,drawing from liver biopsies,complete autopsies,and in vitro liver analyses.We present evidence of the direct impact of SARS-CoV-2 on the liver,substantiated by in vitro observations of viral entry mechanisms and the actual presence of viral particles in liver samples resulting in a variety of cellular changes,including mitochondrial swelling,endoplasmic reticulum dilatation,and hepatocyte apoptosis.Additional ly,we describe the diverse liver pathology observed during COVID-19 infection,encompassing necrosis,steatosis,cholestasis,and lobular inflammation.We also discuss the emergence of long-term complications,notably COVID-19-related secondary sclerosing cholangitis.Recognizing the histopathological liver changes occurring during COVID-19 infection is pivotal for improving patient recovery and guiding decision-making.展开更多
The present letter to the editor is related to the study titled‘Angiotensin-converting enzyme 2 improves liver fibrosis in mice by regulating autophagy of hepatic stellate cells’.Angiotensin-converting enzyme 2 can ...The present letter to the editor is related to the study titled‘Angiotensin-converting enzyme 2 improves liver fibrosis in mice by regulating autophagy of hepatic stellate cells’.Angiotensin-converting enzyme 2 can alleviate liver fibrosis by regulating autophagy of hepatic stellate cells and affecting the renin-angiotensin system.展开更多
The current study aimed to assess the effect of timosaponin AⅢ(T-AⅢ)on drug-metabolizing enzymes during anticancer therapy.The in vivo experiments were conducted on nude and ICR mice.Following a 24-day administratio...The current study aimed to assess the effect of timosaponin AⅢ(T-AⅢ)on drug-metabolizing enzymes during anticancer therapy.The in vivo experiments were conducted on nude and ICR mice.Following a 24-day administration of T-AⅢ,the nude mice exhibited an induction of CYP2B10,MDR1,and CYP3A11 expression in the liver tissues.In the ICR mice,the expression levels of CYP2B10 and MDR1 increased after a three-day T-AⅢ administration.The in vitro assessments with HepG2 cells revealed that T-AⅢ induced the expression of CYP2B6,MDR1,and CYP3A4,along with constitutive androstane receptor(CAR)activation.Treatment with CAR siRNA reversed the T-AⅢ-induced increases in CYP2B6 and CYP3A4 expression.Furthermore,other CAR target genes also showed a significant increase in the expression.The up-regulation of murine CAR was observed in the liver tissues of both nude and ICR mice.Subsequent findings demonstrated that T-AⅢ activated CAR by inhibiting ERK1/2 phosphorylation,with this effect being partially reversed by the ERK activator t-BHQ.Inhibition of the ERK1/2 signaling pathway was also observed in vivo.Additionally,T-AⅢ inhibited the phosphorylation of EGFR at Tyr1173 and Tyr845,and suppressed EGF-induced phosphorylation of EGFR,ERK,and CAR.In the nude mice,T-AⅢ also inhibited EGFR phosphorylation.These results collectively indicate that T-AⅢ is a novel CAR activator through inhibition of the EGFR pathway.展开更多
Partial substitution of inorganic fertilizers with organic amendments is an important agricultural management practice.An 11-year field experiment(22 cropping periods)was carried out to analyze the impacts of differen...Partial substitution of inorganic fertilizers with organic amendments is an important agricultural management practice.An 11-year field experiment(22 cropping periods)was carried out to analyze the impacts of different partial substitution treatments on crop yields and the transformation of nitrogen fractions in greenhouse vegetable soil.Four treatments with equal N,P_(2)O_(5),and K_(2)O inputs were selected,including complete inorganic fertilizer N(CN),50%inorganic fertilizer N plus 50%pig manure N(CPN),50%inorganic fertilizer N plus 25%pig manure N and 25%corn straw N(CPSN),and 50%inorganic fertilizer N plus 50%corn straw N(CSN).Organic substitution treatments tended to increase crop yields since the 6th cropping period compared to the CN treatment.From the 8th to the 22nd cropping periods,the highest yields were observed in the CPSN treatment where yields were 7.5-11.1%greater than in CN treatment.After 11-year fertilization,compared to CN,organic substitution treatments significantly increased the concentrations of NO_(3)^(-)-N,NH_(4)^(+)-N,acid hydrolysis ammonium-N(AHAN),amino acid-N(AAN),amino sugar-N(ASN),and acid hydrolysis unknown-N(AHUN)in soil by 45.0-69.4,32.8-58.1,49.3-66.6,62.0-69.5,34.5-100.3,and 109.2-172.9%,respectively.Redundancy analysis indicated that soil C/N and OC concentration significantly affected the distribution of N fractions.The highest concentrations of NO_(3)^(-)-N,AHAN,AAN,AHUN were found in the CPSN treatment.Organic substitution treatments increased the activities ofβ-glucosidase,β-cellobiosidase,N-acetyl-glucosamidase,L-aminopeptidase,and phosphatase in the soil.Organic substitution treatments reduced vector length and increased vector angle,indicating alleviation of constraints of C and N on soil microorganisms.Organic substitution treatments increased the total concentrations of phospholipid fatty acids(PLFAs)in the soil by 109.9-205.3%,and increased the relative abundance of G^(+)bacteria and fungi taxa,but decreased the relative abundance of G-bacteria,total bacteria,and actinomycetes.Overall,long-term organic substitution management increased soil OC concentration,C/N,and the microbial population,the latter in turn positively influenced soil enzyme activity.Enhanced microorganism numbers and enzyme activity enhanced soil N sequestration by transforming inorganic N to acid hydrolysis-N(AHN),and enhanced soil N supply capacity by activating non-acid hydrolysis-N(NAHN)to AHN,thus improving vegetable yield.Application of inorganic fertilizer,manure,and straw was a more effective fertilization model for achieving sustainable greenhouse vegetable production than application of inorganic fertilizer alone.展开更多
To improve the amylose content(AC)and resistant starch content(RSC)of maize kernel starch,we employed the CRISPR/Cas9 system to create mutants of starch branching enzyme I(SBEI)and starch branching enzyme IIb(SBEIIb)....To improve the amylose content(AC)and resistant starch content(RSC)of maize kernel starch,we employed the CRISPR/Cas9 system to create mutants of starch branching enzyme I(SBEI)and starch branching enzyme IIb(SBEIIb).A frameshift mutation in SBEI(E1,a nucleotide insertion in exon 6)led to plants with higher RSC(1.07%),lower hundred-kernel weight(HKW,24.71±0.14 g),and lower plant height(PH,218.50±9.42 cm)compared to the wild type(WT).Like the WT,E1 kernel starch had irregular,polygonal shapes with sharp edges.A frameshift mutation in SBEIIb(E2,a four-nucleotide deletion in exon 8)led to higher AC(53.48%)and higher RSC(26.93%)than that for the WT.E2 kernel starch was significantly different from the WT regarding granule morphology,chain length distribution pattern,X-ray diffraction pattern,and thermal characteristics;the starch granules were more irregular in shape and comprised typical B-type crystals.Mutating SBEI and SBEIIb(E12)had a synergistic effect on RSC,HKW,PH,starch properties,and starch biosynthesis-associated gene expression.SBEIIa,SS1,SSIIa,SSIIIa,and SSIIIb were upregulated in E12 endosperm compared to WT endosperm.This study lays the foundation for rapidly improving the starch properties of elite maize lines.展开更多
Hyperuricemia,a metabolic disorder related to uric acid metabolism dysregulation,has become a common metabolic disease worldwide,due to changes in lifestyle and dietary structure.In recent years,owing to their high ac...Hyperuricemia,a metabolic disorder related to uric acid metabolism dysregulation,has become a common metabolic disease worldwide,due to changes in lifestyle and dietary structure.In recent years,owing to their high activity and few adverse effects,food-derived active peptides used as functional foods against hyperuricemia have attracted increasing attention.This article aims to focus on the challenge associated with peptide-specific preparation methods development,functional components identification,action mechanism(s)clarification,and bioavailability improvement.The current review proposed recent advances in producing the food-derived peptides with high anti-hyperuricemia activity by protein source screening and matched enzymatic hydrolysis condition adjusting,increased the knowledge about strategies to search antihyperuricemia peptides with definite structure,and emphasized the necessity of combining computer-aided approaches and activity evaluations.In addition,novel action mechanism mediated by gut microbiota was discussed,providing different insights from classical mechanism.Moreover,considering that little attention was paid previously on the structure-activity relationships of anti-hyperuricemia peptides,we collected the sequences from published studies and make a preliminary summary about the structure-activity relationships,which in turn provided guides for enzymatic hydrolysis optimization and bioavailability improvement.Hopefully,this article could promote the development,application and commercialization of food-derived anti-hyperuricemia peptides in the future.展开更多
The conversion of biomass into sugar platform compounds is very important for the biorefinery industry.Pretreatment is essential to the biomass of the sugar platform,however,the lignin obtained by pretreatment,as a ke...The conversion of biomass into sugar platform compounds is very important for the biorefinery industry.Pretreatment is essential to the biomass of the sugar platform,however,the lignin obtained by pretreatment,as a key part of lignocellulose,generally has a passive effect on the enzymatic hydrolysis of cellulose into sugars.In this study,p-TsOH(p-toluenesulfonic acid),DES(Deep eutectic solvent)and CAOSA(cooking with active oxygen and solid alkali)pretreatment ways were used to fraction lignin from bamboo biomass.After CAOSA treatment,the hydrolysis efficiency of the pulp was 95.57%.Moreover,the effect of different treatment methods on lignin properties was studied and the promotion effect of lignin was investigated by adding it to the cellulose enzymatic hydrolysis system.In this work,the results showed that CAOSA-extracted lignin with lower D(1.31-1.25)had a better adsorption effect on the enzyme protein.p-TsOH-extracted lignin with a larger S/G ratio enhanced the inhibition of enzymatic hydrolysis.In addition,the presence of-COOHs in lignin could reduce its inhibitory effect on cellulose saccharification.展开更多
Background Our previous studies demonstrated that divalent organic iron(Fe)proteinate sources with higher complexation or chelation strengths as expressed by the greater quotient of formation(Qf)values displayed highe...Background Our previous studies demonstrated that divalent organic iron(Fe)proteinate sources with higher complexation or chelation strengths as expressed by the greater quotient of formation(Qf)values displayed higher Fe bioavailabilities for broilers.Sodium iron ethylenediaminetetraacetate(NaFeEDTA)is a trivalent organic Fe source with the strongest chelating ligand EDTA.However,the bioavailability of Fe when administered as NaFeEDTA in broilers and other agricultural animals remains untested.Herein,the chemical characteristics of 12 NaFeEDTA products were determined.Of these,one feed grade NaFeEDTA(Qf=2.07×10^(8)),one food grade NaFeEDTA(Qf=3.31×10^(8)),and one Fe proteinate with an extremely strong chelation strength(Fe-Prot ES,Qf value=8,590)were selected.Their bioavailabilities relative to Fe sulfate(FeSO_(4)·7H_(2)O)for broilers fed with a conventional corn-soybean meal diet were evaluated during d 1 to 21 by investigating the effects of the above Fe sources and added Fe levels on the growth performance,hematological indices,Fe contents,activities and gene expressions of Fe-containing enzymes in various tissues of broilers.Results NaFeEDTA sources varied greatly in their chemical characteristics.Plasma Fe concentration(PI),transferrin saturation(TS),liver Fe content,succinate dehydrogenase(SDH)activities in liver,heart,and kidney,catalase(CAT)activity in liver,and SDH mRNA expressions in liver and kidney increased linearly(P<0.05)with increasing levels of Fe supplementation.However,differences among Fe sources were detected(P<0.05)only for PI,liver Fe content,CAT activity in liver,SDH activities in heart and kidney,and SDH mRNA expressions in liver and kidney.Based on slope ratios from multiple linear regressions of the above indices on daily dietary analyzed Fe intake,the average bioavailabilities of Fe-Prot ES,feed grade NaFeEDTA,and food grade NaFeEDTA relative to the inorganic FeSO_(4)·7H_(2)O(100%)for broilers were 139%,155%,and 166%,respectively.Conclusions The bioavailabilities of organic Fe sources relative to FeSO_(4)·7H_(2)O were closely related to their Qf values,and NaFeEDTA sources with higher Qf values showed higher Fe bioavailabilities for broilers fed with a conventional corn-soybean meal diet.展开更多
The objectives of this study were to explore the changes in soil stoichiometry and enzyme activities at different distances from an opencast coal mine in the Hulun Buir Grassland of China. Four transects were establis...The objectives of this study were to explore the changes in soil stoichiometry and enzyme activities at different distances from an opencast coal mine in the Hulun Buir Grassland of China. Four transects were established on north and east sides of the opencast coal mining area, and samples were collected at 50 m, 550 m, and 1550 m from the pit on each transect. Control samples were collected from a grassland station 8 km from the opencast coal mining area that was not disturbed by mining. Four replicate soil samples were collected at each point on the four transects. Soil physicochemical properties and enzyme activities were determined, and correlations between soil properties and stoichiometric ratios and enzyme activities were explored using redundancy analysis. The increase in distance from mining did not significantly affect soil properties, although soil urease activity was significantly lower than that of the control area. Soil properties 1550 m from the mine pit were similar to those at the grassland control. In addition, soil total nitrogen had the greatest effect on soil stoichiometry, and soil total potassium had the greatest effect on soil enzyme activities. Coal dust from opencast mining might be the main factor affecting soil stoichiometry and enzyme activities. The results of this study provide direction for the next step in studying the influence of mining areas on soil properties and processes.展开更多
Objective:To investigate the therapeutic effect of Biling Weitong Granules combined with oryz-aspergillus enzyme and pancreatin tablets on patients with reflux esophagitis with functional dyspepsia.Methods:Sixty patie...Objective:To investigate the therapeutic effect of Biling Weitong Granules combined with oryz-aspergillus enzyme and pancreatin tablets on patients with reflux esophagitis with functional dyspepsia.Methods:Sixty patients diagnosed with reflux esophagitis with functional dyspepsia who were admitted to the Affiliated Hospital of Hebei University between June 2020 and June 2023 were selected and divided into two groups:the control group and the observation group,each consisting of 30 cases.The control group received oryz-aspergillus enzyme and pancreatin tablets only,while the observation group received Biling Weitong Granules in addition to the tablets.The clinical efficacy,Chinese medicine syndrome points,esophageal kinetic indexes,gastrointestinal hormone levels,and therapeutic safety of both groups were evaluated.Results:The total efficiency of the observation group reached 93.33%,significantly higher than the 73.33%of the control group(P<0.05).After treatment,patients in the observation group exhibited significantly lower scores for Chinese medicine symptoms such as early satiety,belching,abdominal distension,abdominal pain,and loss of appetite compared to the control group(P<0.05).Furthermore,the observation group showed significantly higher upper esophageal sphincter pressure,lower esophageal sphincter pressure,and distal esophageal contraction scores compared to the control group(P<0.05).Additionally,levels of gastric motility hormone,vasoactive intestinal peptide,and gastrin were significantly higher in the observation group compared to the control group(P<0.05).Throughout the treatment period,there was no significant difference in the incidence of adverse reactions between the two groups,indicating comparable safety of the two treatment modalities(P>0.05).Conclusion:The combination of Biling Weitong Granules with oryz-aspergillus enzyme and pancreatin tablets demonstrates significant efficacy in the treatment of reflux esophagitis with functional dyspepsia,with a better safety profile.This finding warrants further clinical promotion.展开更多
n-Caproate,which is produced via chain elongation(CE)using waste biomass,can supply various fossilderived products,thus advancing the realization of carbon neutrality.Ammonia released from the degradation of nitrogen-...n-Caproate,which is produced via chain elongation(CE)using waste biomass,can supply various fossilderived products,thus advancing the realization of carbon neutrality.Ammonia released from the degradation of nitrogen-rich waste biomass can act as a nutrient or an inhibitor in anaerobic bioprocesses,including CE,with the distinction being primarily dependent on its concentration.Currently,the optimal concentration of ammonia and the threshold of toxicity for open-culture n-caproate production using ethanol as an electron donor,along with the underlying mechanisms,remain unclear.This study revealed that the optimal concentration of ammonia for n-caproate production was 2.0 g∙L^(-1),whereas concentrations exceeding this threshold markedly suppressed the CE performance.Exploration of the mechanism revealed the involvement of two forms of ammonia(i.e.,ammonium ions and free ammonia)in this inhibitory behavior.High ammonia levels(5.0 g∙L^(-1))induced excessive ethanol oxidation and suppressed the reverse β-oxidation(RBO)process,directly leading to the enhanced activities of enzymes(phosphotransacetylase and acetate kinase)responsible for acetate formation and diminished activities of butyryl-coenzyme A(CoA):acetyl-CoA transferase,caproyl-CoA:butyryl-CoA transferase,and caproyl-CoA:acetyl-CoA transferase that are involved in the syntheses of n-butyrate and n-caproate.Furthermore,the composition of the microbial community shifted from Paraclostridium dominance(at 0.1 g∙L^(-1)ammonia)to a co-dominance of Fermentimonas,Clostridium sensu stricto 12,and Clostridium sensu stricto 15 at 2.0 g∙L^(-1)ammonia.However,these CE-functional bacteria were mostly absent in the presence of excessive ammonia(5.0 g∙L^(-1)ammonia).Metagenomic analysis revealed the upregulation of functions such as RBO,fatty acid synthesis,K^(+)efflux,adenosine triphosphatase(ATPase)metabolism,and metal cation export in the presence of 2.0 g∙L^(-1)ammonia,collectively contributing to enhanced n-caproate production.Conversely,the aforementioned functions(excluding metal cation export)and K^(+)influx were suppressed by excessive ammonia,undermining both ammonia detoxification and n-caproate biosynthesis.The comprehensive elucidation of ammonia-driven mechanisms influencing n-caproate production,as provided in this study,is expected to inspire researchers to devise effective strategies to alleviate ammonia-induced inhibition.展开更多
Regulating planting density and nitrogen(N)fertilization could delay chlorophyll(Chl)degradation and leaf senescence in maize cultivars.This study measured changes in ear leaf green area(GLA_(ear)),Chl content,the act...Regulating planting density and nitrogen(N)fertilization could delay chlorophyll(Chl)degradation and leaf senescence in maize cultivars.This study measured changes in ear leaf green area(GLA_(ear)),Chl content,the activities of Chl a-degrading enzymes after silking,and the post-silking dry matter accumulation and grain yield under multiple planting densities and N fertilization rates.The dynamic change of GLA_(ear)after silking fitted to the logistic model,and the GLA_(ear) duration and the GLAearat 42 d after silking were affected mainly by the duration of the initial senescence period(T_(1))which was a key factor of the leaf senescence.The average chlorophyllase(CLH)activity was 8.3 times higher than pheophytinase activity and contributed most to the Chl content,indicating that CLH is a key enzyme for degrading Chl a in maize.Increasing density increased the CLH activity and decreased the Chl content,T1,GLAear,and GLA_(ear) duration.Under high density,appropriate N application reduced CLH activity,increased Chl content,prolonged T1,alleviated high-density-induced leaf senescence,and increased post-silking dry matter accumulation and grain yield.展开更多
This study assessed the influence of exogenous ME in the mitigation of cold damage in pepper seedlings. Melatonin(ME) is a dynamic molecule that helps plants cope with stress in several ways. Cold stress(CS) is one of...This study assessed the influence of exogenous ME in the mitigation of cold damage in pepper seedlings. Melatonin(ME) is a dynamic molecule that helps plants cope with stress in several ways. Cold stress(CS) is one of the most important environmental factors that restrict plant growth and yield. Pepper(Capsicum annuum L.) is a valuable commercial crop, highly sensitive to CS. Thus, identifying an efficient strategy to mitigate cold damage is critical for long-term pepper production. For this purpose, the roots of pepper seedlings were pretreated with ME(5 μmol · L^(-1)) and exposed to CS for 7 d. The results indicated that CS suppressed pepper growth, hampered photosynthetic capacity, and damaged root architecture in pepper plants. In contrast, the production of reactive oxygen species(ROS), malondialdehyde(MDA), electrolyte leakage(EL), proline, and soluble sugars were enhanced in plants under CS. ME(5 μmol · L^(-1)) pretreatment reduced the negative effects of CS by recovering plant growth, root traits, gas exchange elements, and pigment molecules compared to CS control treatment. Furthermore, ME application efficiently reduced oxidative stress markers [hydrogen peroxide(H_(2)O_(2)), superoxide ion(O_(2)^(·-)), EL, and MDA] while increasing proline and soluble sugar content in pepper leaves. ME application combined with CS further increased antioxidant enzymes and related gene expression. Collectively, our results confirmed the mitigating potential of ME supplementation for CS by maintaining pepper seedling growth,improving the photosynthesis apparatus, regulating pigments, and osmolyte content.展开更多
Recent research on the genome of Bifidobacterium bifidum has mainly focused on the isolation sources(intestinal tract niche)recently,but reports on the isolation region are limited.This study analyzed the differences ...Recent research on the genome of Bifidobacterium bifidum has mainly focused on the isolation sources(intestinal tract niche)recently,but reports on the isolation region are limited.This study analyzed the differences in the genome of B.bifidum isolated from different geographical populations by comparative genomic analysis.Results at the genome level indicated that the GC content of American isolates was significantly higher than that of Chinese and Russian isolates.The phylogenetic tree,based on 919 core genes showed that B.bifidum might be related to the geographical characteristics of isolation region.Furthermore,functional annotation analysis demonstrated that copy numbers of carbohydrate-active enzymes(CAZys)involved in the degradation of polysaccharide from plant and host sources in B.bifidum were high,and 18 CAZys showed significant differences across different geographical populations,indicating that B.bifidum had adapted to the human intestinal environment,especially in the groups with diets rich in fiber.Dietary habits were one of the main reasons for the differences of B.bifidum across different geographical populations.Additionally,B.bifidum exhibited high diversity,evident in glycoside hydrolases,the CRISPR-Cas system,and prophages.This study provides a genetic basis for further research and development of B.bifidum.展开更多
Cyperus difformis L.is a troublesome weed in paddy fields and has attracted attention due to its resistance to acetohydroxyacid synthase(AHAS)inhibitors.It was found that the amino acid mutation in AHAS was the primar...Cyperus difformis L.is a troublesome weed in paddy fields and has attracted attention due to its resistance to acetohydroxyacid synthase(AHAS)inhibitors.It was found that the amino acid mutation in AHAS was the primary cause for the resistance of Cyperus difformis.However,the effect of different mutations on AHAS function is not clear in Cyperus difformis.To confirm the effect of mutations on AHAS function,six biotypes were collected,including Pro197Arg,Pro197Ser,Pro197Leu,Asp376Glu,Trp574Leu and wild type,from Hunan,Anhui,Jiangxi and Jiangsu provinces,China and the function of AHAS was characterized.The AHAS in vitro inhibition assay results indicated that the mutations decreased the sensitivity of AHAS to pyrazosulfuron-ethyl,in which the I_(50)(the half maximal inhibitory concentration)of wild type AHAS was 0.04μmol L^(-1)and Asp376Glu,Pro197Leu,Pro197Arg,Pro197Ser and Trp574Leu mutations were 3.98,11.50,40.38,38.19 and 311.43μmol L^(-1),respectively.In the determination of enzyme kinetics parameters,the Km and the maximum reaction velocity(Vmax)of the wild type were 5.18 mmol L^(-1)and 0.12 nmol mg^(-1)min^(-1),respectively,and the Km values of AHAS with Asp376Glu,Trp574Leu,Pro197Leu and Pro197Ser mutations were 0.38-0.93 times of the wild type.The Km value of the Pro197Arg mutation was 1.14times of the wild type,and the Vmax values of the five mutations were 1.17-3.33-fold compared to the wild type.It was found that the mutations increased the affinity of AHAS to the substrate,except for the Pro197Arg mutation.At a concentration of 0.0032-100 mmol L^(-1)branched-chain amino acids(BCAAs),the sensitivity of the other four mutant AHAS biotypes to feedback inhibition decreased,except for the Pro197Arg mutation.This study elucidated the effect of different mutations on AHAS function in Cyperus difformis and provided ideas for further study of resistance development.展开更多
Nostoc flagelliforme is a terrestrial cyanobacterium that can resist many types of stressors,including drought,ultraviolet radiation,and extreme temperatures.In this study,we identified the drought tolerance gene Nfcr...Nostoc flagelliforme is a terrestrial cyanobacterium that can resist many types of stressors,including drought,ultraviolet radiation,and extreme temperatures.In this study,we identified the drought tolerance gene NfcrtO,which encodes aβ-carotene ketolase,through screening the transcriptome of N.flagelliforme under water loss stress.Prokaryotic expression of NfcrtO under 0.6 mol/L sorbitol or under 0.3 mol/L NaCl stress significantly increased the growth rate of Escherichia coli.When NfcrtO was heterologously expressed in rice,the seedling height and root length of NfcrtO-overexpressing rice plants were significantly higher than those of the wild type(WT)plants grown on½Murashige and Skoog solid medium with 120 mmol/L mannitol at the seedling stage.Transcriptome analysis revealed that NfcrtO was involved in osmotic stress,antioxidant,and other stress-related pathways.Additionally,the survival rate of the NfcrtO-overexpression lines was significantly higher than that of the WT line under both hydroponic stress(24%PEG and 100 mmol/L H_(2)O_(2))and soil drought treatment at the seedling stage.Physiological traits,including the activity levels of superoxide dismutase,peroxidase,catalase,total antioxidant capacity,and the contents of proline,trehalose,and soluble sugar,were significantly improved in the NfcrtO-overexpression lines relative to those in the WT line under 20%PEG treatment.Furthermore,when water was withheld at the booting stage,the grain yield per plant of NfcrtO-overexpression lines was significantly higher than that of the WT line.Yeast two-hybrid analysis identified interactions between NfcrtO and Dna J protein,E3 ubiquitin-protein ligase,and pyrophosphate-energized vacuolar membrane proton pump.Thus,heterologous expression of NfcrtO in rice could significantly improve the tolerance of rice to osmotic stress,potentially facilitating the development of new rice varieties.展开更多
基金Supported by Special Research Funds for Public Service Sector(Agriculture)(201503137201303080)+1 种基金Project of Jilin Provincial Department of Science and Technology(20140307009NY)Project of Tanbian University(602014047)
文摘In order to explore the substitution substrate for rice seedling on upland fields,this paper uses spent mushroom substrate to study the physical and chemical properties of substrate,enzymic activity and number of tillers during the cultivation of rice seedling on upland fields.The results show that at the three stages of rice seedling cultivation( two-leaf stage,three-leaf stage,four-leaf stage),the content of organic matter and EC in spent mushroom substrate is higher than in the control soil,p H is within the range suitable for the growth of rice,and other nutrients( total nitrogen,total phosphorus,total potassium,available nitrogen,available phosphorus) are slightly different in different periods;except phosphatase,there are significant differences in urease,catalase and sucrase between spent mushroom substrate and the control soil; the number of tillers under spent mushroom substrate is larger than under the control.
文摘In order to achieve the transformation from the conventional soil-covering cultivation of Tricholoma giganteum with bags to the soilless cultivation with bottles and understand the mechanism of primordium formation of Tricholoma giganteum,with Tricholoma giganteum mycelia as experimental materials,this paper studied the effect of different fruiting treatments on the activity of three enzymes in different time.The results showed that from the mycelial recovery to primardial formation and budding under three treatment groups which could form primordium,the tyrosinase activity was relatively stable,and under two treatment groups which could not form primordium,the tyrosinase activity dropped after the rise and reached a maximum on the 9 th day,significantly higher than under the other three groups,indicating that too high tyrosinase inhibited primardial formation; the prolease and amylase activity was effectively activated before primardial formation,and the enzymic activity was significantly higher than under the two treatment groups which could not form primordium.
基金supported by the National Research Foundation of Korea(No.2021R1A2B5B03001691).
文摘Point-of-care testing(POCT)is the practice of diagnosing and monitoring diseases where the patient is located,as opposed to traditional treatment conducted solely in a medical laboratory or other clinical setting.POCT has been less common in the recent past due to a lack of portable medical devices capable of facilitating effective medical testing.However,recent growth has occurred in this field due to advances in diagnostic technologies,device miniaturization,and progress in wearable electronics.Among these developments,electrochemical sensors have attracted interest in the POCT field due to their high sensitivity,compact size,and affordability.They are used in various applications,from disease diagnosis to health status monitoring.In this paper we explore recent advancements in electrochemical sensors,the methods of fabricating them,and the various types of sensing mechanisms that can be used.Furthermore,we delve into methods for immobilizing specific biorecognition elements,including enzymes,antibodies,and aptamers,onto electrode surfaces and how these sensors are used in real-world POCT settings.
文摘Coronavirus disease 2019(COVID-19)is a disease that caused a global pandemic and is caused by infection of severe acute respiratory syndrome coronavirus 2 virus.It has affected over 768 million people worldwide,resulting in approx-imately 6900000 deaths.High-risk groups,identified by the Centers for Disease Control and Prevention,include individuals with conditions like type 2 diabetes mellitus(T2DM),obesity,chronic lung disease,serious heart conditions,and chronic kidney disease.Research indicates that those with T2DM face a hei-ghtened susceptibility to COVID-19 and increased mortality compared to non-diabetic individuals.Examining the renin-angiotensin system(RAS),a vital regulator of blood pressure and pulmonary stability,reveals the significance of the angiotensin-converting enzyme(ACE)and ACE2 enzymes.ACE converts angiotensin-I to the vasoconstrictor angiotensin-II,while ACE2 counters this by converting angiotensin-II to angiotensin 1-7,a vasodilator.Reduced ACE2 exp-ression,common in diabetes,intensifies RAS activity,contributing to conditions like inflammation and fibrosis.Although ACE inhibitors and angiotensin receptor blockers can be therapeutically beneficial by increasing ACE2 levels,concerns arise regarding the potential elevation of ACE2 receptors on cell membranes,potentially facilitating COVID-19 entry.This review explored the role of the RAS/ACE2 mechanism in amplifying severe acute respiratory syndrome cor-onavirus 2 infection and associated complications in T2DM.Potential treatment strategies,including recombinant human ACE2 therapy,broad-spectrum antiviral drugs,and epigenetic signature detection,are discussed as promising avenues in the battle against this pandemic.
文摘Coronavirus disease 2019(COVID-19),caused by the highly pathogenic severe acute respiratory syndrome coronavirus 2(SARS-CoV-2),primarily impacts the respiratory tract and can lead to severe outcomes such as acute respiratory distress syndrome,multiple organ failure,and death.Despite extensive studies on the pathogenicity of SARS-CoV-2,its impact on the hepatobiliary system remains unclear.While liver injury is commonly indicated by reduced albumin and elevated bilirubin and transaminase levels,the exact source of this damage is not fully understood.Proposed mechanisms for injury include direct cytotoxicity,collateral damage from inflammation,drug-induced liver injury,and ischemia/hypoxia.However,evidence often relies on blood tests with liver enzyme abnormalities.In this comprehensive review,we focused solely on the different histopathological manifestations of liver injury in COVID-19 patients,drawing from liver biopsies,complete autopsies,and in vitro liver analyses.We present evidence of the direct impact of SARS-CoV-2 on the liver,substantiated by in vitro observations of viral entry mechanisms and the actual presence of viral particles in liver samples resulting in a variety of cellular changes,including mitochondrial swelling,endoplasmic reticulum dilatation,and hepatocyte apoptosis.Additional ly,we describe the diverse liver pathology observed during COVID-19 infection,encompassing necrosis,steatosis,cholestasis,and lobular inflammation.We also discuss the emergence of long-term complications,notably COVID-19-related secondary sclerosing cholangitis.Recognizing the histopathological liver changes occurring during COVID-19 infection is pivotal for improving patient recovery and guiding decision-making.
文摘The present letter to the editor is related to the study titled‘Angiotensin-converting enzyme 2 improves liver fibrosis in mice by regulating autophagy of hepatic stellate cells’.Angiotensin-converting enzyme 2 can alleviate liver fibrosis by regulating autophagy of hepatic stellate cells and affecting the renin-angiotensin system.
基金supported by the National Natural Science Foundation of China(Grant Nos.82073934,81872937,and 81673513).
文摘The current study aimed to assess the effect of timosaponin AⅢ(T-AⅢ)on drug-metabolizing enzymes during anticancer therapy.The in vivo experiments were conducted on nude and ICR mice.Following a 24-day administration of T-AⅢ,the nude mice exhibited an induction of CYP2B10,MDR1,and CYP3A11 expression in the liver tissues.In the ICR mice,the expression levels of CYP2B10 and MDR1 increased after a three-day T-AⅢ administration.The in vitro assessments with HepG2 cells revealed that T-AⅢ induced the expression of CYP2B6,MDR1,and CYP3A4,along with constitutive androstane receptor(CAR)activation.Treatment with CAR siRNA reversed the T-AⅢ-induced increases in CYP2B6 and CYP3A4 expression.Furthermore,other CAR target genes also showed a significant increase in the expression.The up-regulation of murine CAR was observed in the liver tissues of both nude and ICR mice.Subsequent findings demonstrated that T-AⅢ activated CAR by inhibiting ERK1/2 phosphorylation,with this effect being partially reversed by the ERK activator t-BHQ.Inhibition of the ERK1/2 signaling pathway was also observed in vivo.Additionally,T-AⅢ inhibited the phosphorylation of EGFR at Tyr1173 and Tyr845,and suppressed EGF-induced phosphorylation of EGFR,ERK,and CAR.In the nude mice,T-AⅢ also inhibited EGFR phosphorylation.These results collectively indicate that T-AⅢ is a novel CAR activator through inhibition of the EGFR pathway.
基金supported by the earmarked fund for China Agriculture Research System(CARS-23-B04)the National Key Research and Development Program of China(2016YFD0201001)HAAFS Science and Technology Innovation Special Project,China(2022KJCXZX-ZHS-2).
文摘Partial substitution of inorganic fertilizers with organic amendments is an important agricultural management practice.An 11-year field experiment(22 cropping periods)was carried out to analyze the impacts of different partial substitution treatments on crop yields and the transformation of nitrogen fractions in greenhouse vegetable soil.Four treatments with equal N,P_(2)O_(5),and K_(2)O inputs were selected,including complete inorganic fertilizer N(CN),50%inorganic fertilizer N plus 50%pig manure N(CPN),50%inorganic fertilizer N plus 25%pig manure N and 25%corn straw N(CPSN),and 50%inorganic fertilizer N plus 50%corn straw N(CSN).Organic substitution treatments tended to increase crop yields since the 6th cropping period compared to the CN treatment.From the 8th to the 22nd cropping periods,the highest yields were observed in the CPSN treatment where yields were 7.5-11.1%greater than in CN treatment.After 11-year fertilization,compared to CN,organic substitution treatments significantly increased the concentrations of NO_(3)^(-)-N,NH_(4)^(+)-N,acid hydrolysis ammonium-N(AHAN),amino acid-N(AAN),amino sugar-N(ASN),and acid hydrolysis unknown-N(AHUN)in soil by 45.0-69.4,32.8-58.1,49.3-66.6,62.0-69.5,34.5-100.3,and 109.2-172.9%,respectively.Redundancy analysis indicated that soil C/N and OC concentration significantly affected the distribution of N fractions.The highest concentrations of NO_(3)^(-)-N,AHAN,AAN,AHUN were found in the CPSN treatment.Organic substitution treatments increased the activities ofβ-glucosidase,β-cellobiosidase,N-acetyl-glucosamidase,L-aminopeptidase,and phosphatase in the soil.Organic substitution treatments reduced vector length and increased vector angle,indicating alleviation of constraints of C and N on soil microorganisms.Organic substitution treatments increased the total concentrations of phospholipid fatty acids(PLFAs)in the soil by 109.9-205.3%,and increased the relative abundance of G^(+)bacteria and fungi taxa,but decreased the relative abundance of G-bacteria,total bacteria,and actinomycetes.Overall,long-term organic substitution management increased soil OC concentration,C/N,and the microbial population,the latter in turn positively influenced soil enzyme activity.Enhanced microorganism numbers and enzyme activity enhanced soil N sequestration by transforming inorganic N to acid hydrolysis-N(AHN),and enhanced soil N supply capacity by activating non-acid hydrolysis-N(NAHN)to AHN,thus improving vegetable yield.Application of inorganic fertilizer,manure,and straw was a more effective fertilization model for achieving sustainable greenhouse vegetable production than application of inorganic fertilizer alone.
基金supported by the National Key Research and Development Program of China(2023YFD1202901)the China Agriculture Research System of MOF and MARA(CARS-02-06)the Key Area Research and Development Program of Guangdong Province(2018B020202008).
文摘To improve the amylose content(AC)and resistant starch content(RSC)of maize kernel starch,we employed the CRISPR/Cas9 system to create mutants of starch branching enzyme I(SBEI)and starch branching enzyme IIb(SBEIIb).A frameshift mutation in SBEI(E1,a nucleotide insertion in exon 6)led to plants with higher RSC(1.07%),lower hundred-kernel weight(HKW,24.71±0.14 g),and lower plant height(PH,218.50±9.42 cm)compared to the wild type(WT).Like the WT,E1 kernel starch had irregular,polygonal shapes with sharp edges.A frameshift mutation in SBEIIb(E2,a four-nucleotide deletion in exon 8)led to higher AC(53.48%)and higher RSC(26.93%)than that for the WT.E2 kernel starch was significantly different from the WT regarding granule morphology,chain length distribution pattern,X-ray diffraction pattern,and thermal characteristics;the starch granules were more irregular in shape and comprised typical B-type crystals.Mutating SBEI and SBEIIb(E12)had a synergistic effect on RSC,HKW,PH,starch properties,and starch biosynthesis-associated gene expression.SBEIIa,SS1,SSIIa,SSIIIa,and SSIIIb were upregulated in E12 endosperm compared to WT endosperm.This study lays the foundation for rapidly improving the starch properties of elite maize lines.
基金sponsored by the National Natural Science Foundation China(32270115)National Key R&D Program of China(2018YFD0901102)+1 种基金Fundamental Research Funds for the Provincial Universities of Zhejiang(SJLY2021015)K.C.Wong Magna Fund of Ningbo University。
文摘Hyperuricemia,a metabolic disorder related to uric acid metabolism dysregulation,has become a common metabolic disease worldwide,due to changes in lifestyle and dietary structure.In recent years,owing to their high activity and few adverse effects,food-derived active peptides used as functional foods against hyperuricemia have attracted increasing attention.This article aims to focus on the challenge associated with peptide-specific preparation methods development,functional components identification,action mechanism(s)clarification,and bioavailability improvement.The current review proposed recent advances in producing the food-derived peptides with high anti-hyperuricemia activity by protein source screening and matched enzymatic hydrolysis condition adjusting,increased the knowledge about strategies to search antihyperuricemia peptides with definite structure,and emphasized the necessity of combining computer-aided approaches and activity evaluations.In addition,novel action mechanism mediated by gut microbiota was discussed,providing different insights from classical mechanism.Moreover,considering that little attention was paid previously on the structure-activity relationships of anti-hyperuricemia peptides,we collected the sequences from published studies and make a preliminary summary about the structure-activity relationships,which in turn provided guides for enzymatic hydrolysis optimization and bioavailability improvement.Hopefully,this article could promote the development,application and commercialization of food-derived anti-hyperuricemia peptides in the future.
基金financially supported by the National Key R&D Program of China(No.2021YFC2101604)National Natural Science Foundation of China(No.22278339,21978248)Fujian Provincial Key Science and Technology Program of China(No.2022YZ037013)。
文摘The conversion of biomass into sugar platform compounds is very important for the biorefinery industry.Pretreatment is essential to the biomass of the sugar platform,however,the lignin obtained by pretreatment,as a key part of lignocellulose,generally has a passive effect on the enzymatic hydrolysis of cellulose into sugars.In this study,p-TsOH(p-toluenesulfonic acid),DES(Deep eutectic solvent)and CAOSA(cooking with active oxygen and solid alkali)pretreatment ways were used to fraction lignin from bamboo biomass.After CAOSA treatment,the hydrolysis efficiency of the pulp was 95.57%.Moreover,the effect of different treatment methods on lignin properties was studied and the promotion effect of lignin was investigated by adding it to the cellulose enzymatic hydrolysis system.In this work,the results showed that CAOSA-extracted lignin with lower D(1.31-1.25)had a better adsorption effect on the enzyme protein.p-TsOH-extracted lignin with a larger S/G ratio enhanced the inhibition of enzymatic hydrolysis.In addition,the presence of-COOHs in lignin could reduce its inhibitory effect on cellulose saccharification.
基金funded by Jiangsu Shuang Chuang Tuan Dui program (JSSCTD202147)Jiangsu Shuang Chuang Ren Cai program (JSSCRC2021541)+1 种基金Young Elite Scientists Sponsorship Program by CAST (2022QNRC001)the Initiation Funds of Yangzhou University for Distinguished Scientists
文摘Background Our previous studies demonstrated that divalent organic iron(Fe)proteinate sources with higher complexation or chelation strengths as expressed by the greater quotient of formation(Qf)values displayed higher Fe bioavailabilities for broilers.Sodium iron ethylenediaminetetraacetate(NaFeEDTA)is a trivalent organic Fe source with the strongest chelating ligand EDTA.However,the bioavailability of Fe when administered as NaFeEDTA in broilers and other agricultural animals remains untested.Herein,the chemical characteristics of 12 NaFeEDTA products were determined.Of these,one feed grade NaFeEDTA(Qf=2.07×10^(8)),one food grade NaFeEDTA(Qf=3.31×10^(8)),and one Fe proteinate with an extremely strong chelation strength(Fe-Prot ES,Qf value=8,590)were selected.Their bioavailabilities relative to Fe sulfate(FeSO_(4)·7H_(2)O)for broilers fed with a conventional corn-soybean meal diet were evaluated during d 1 to 21 by investigating the effects of the above Fe sources and added Fe levels on the growth performance,hematological indices,Fe contents,activities and gene expressions of Fe-containing enzymes in various tissues of broilers.Results NaFeEDTA sources varied greatly in their chemical characteristics.Plasma Fe concentration(PI),transferrin saturation(TS),liver Fe content,succinate dehydrogenase(SDH)activities in liver,heart,and kidney,catalase(CAT)activity in liver,and SDH mRNA expressions in liver and kidney increased linearly(P<0.05)with increasing levels of Fe supplementation.However,differences among Fe sources were detected(P<0.05)only for PI,liver Fe content,CAT activity in liver,SDH activities in heart and kidney,and SDH mRNA expressions in liver and kidney.Based on slope ratios from multiple linear regressions of the above indices on daily dietary analyzed Fe intake,the average bioavailabilities of Fe-Prot ES,feed grade NaFeEDTA,and food grade NaFeEDTA relative to the inorganic FeSO_(4)·7H_(2)O(100%)for broilers were 139%,155%,and 166%,respectively.Conclusions The bioavailabilities of organic Fe sources relative to FeSO_(4)·7H_(2)O were closely related to their Qf values,and NaFeEDTA sources with higher Qf values showed higher Fe bioavailabilities for broilers fed with a conventional corn-soybean meal diet.
基金National Natural Science Foundation of China (52394195)Joint research program for ecological conservation and high-quality development of the Yellow River Basin (2022-YRUC-01-0304).
文摘The objectives of this study were to explore the changes in soil stoichiometry and enzyme activities at different distances from an opencast coal mine in the Hulun Buir Grassland of China. Four transects were established on north and east sides of the opencast coal mining area, and samples were collected at 50 m, 550 m, and 1550 m from the pit on each transect. Control samples were collected from a grassland station 8 km from the opencast coal mining area that was not disturbed by mining. Four replicate soil samples were collected at each point on the four transects. Soil physicochemical properties and enzyme activities were determined, and correlations between soil properties and stoichiometric ratios and enzyme activities were explored using redundancy analysis. The increase in distance from mining did not significantly affect soil properties, although soil urease activity was significantly lower than that of the control area. Soil properties 1550 m from the mine pit were similar to those at the grassland control. In addition, soil total nitrogen had the greatest effect on soil stoichiometry, and soil total potassium had the greatest effect on soil enzyme activities. Coal dust from opencast mining might be the main factor affecting soil stoichiometry and enzyme activities. The results of this study provide direction for the next step in studying the influence of mining areas on soil properties and processes.
文摘Objective:To investigate the therapeutic effect of Biling Weitong Granules combined with oryz-aspergillus enzyme and pancreatin tablets on patients with reflux esophagitis with functional dyspepsia.Methods:Sixty patients diagnosed with reflux esophagitis with functional dyspepsia who were admitted to the Affiliated Hospital of Hebei University between June 2020 and June 2023 were selected and divided into two groups:the control group and the observation group,each consisting of 30 cases.The control group received oryz-aspergillus enzyme and pancreatin tablets only,while the observation group received Biling Weitong Granules in addition to the tablets.The clinical efficacy,Chinese medicine syndrome points,esophageal kinetic indexes,gastrointestinal hormone levels,and therapeutic safety of both groups were evaluated.Results:The total efficiency of the observation group reached 93.33%,significantly higher than the 73.33%of the control group(P<0.05).After treatment,patients in the observation group exhibited significantly lower scores for Chinese medicine symptoms such as early satiety,belching,abdominal distension,abdominal pain,and loss of appetite compared to the control group(P<0.05).Furthermore,the observation group showed significantly higher upper esophageal sphincter pressure,lower esophageal sphincter pressure,and distal esophageal contraction scores compared to the control group(P<0.05).Additionally,levels of gastric motility hormone,vasoactive intestinal peptide,and gastrin were significantly higher in the observation group compared to the control group(P<0.05).Throughout the treatment period,there was no significant difference in the incidence of adverse reactions between the two groups,indicating comparable safety of the two treatment modalities(P>0.05).Conclusion:The combination of Biling Weitong Granules with oryz-aspergillus enzyme and pancreatin tablets demonstrates significant efficacy in the treatment of reflux esophagitis with functional dyspepsia,with a better safety profile.This finding warrants further clinical promotion.
基金supported by the Natural Science Foundation of Sichuan Province(2022NSFSC1042)the National Natural Science Foundation of China(52000132)the Open Project of the State Key Laboratory of Urban Water Resource and Environment(HC202241).
文摘n-Caproate,which is produced via chain elongation(CE)using waste biomass,can supply various fossilderived products,thus advancing the realization of carbon neutrality.Ammonia released from the degradation of nitrogen-rich waste biomass can act as a nutrient or an inhibitor in anaerobic bioprocesses,including CE,with the distinction being primarily dependent on its concentration.Currently,the optimal concentration of ammonia and the threshold of toxicity for open-culture n-caproate production using ethanol as an electron donor,along with the underlying mechanisms,remain unclear.This study revealed that the optimal concentration of ammonia for n-caproate production was 2.0 g∙L^(-1),whereas concentrations exceeding this threshold markedly suppressed the CE performance.Exploration of the mechanism revealed the involvement of two forms of ammonia(i.e.,ammonium ions and free ammonia)in this inhibitory behavior.High ammonia levels(5.0 g∙L^(-1))induced excessive ethanol oxidation and suppressed the reverse β-oxidation(RBO)process,directly leading to the enhanced activities of enzymes(phosphotransacetylase and acetate kinase)responsible for acetate formation and diminished activities of butyryl-coenzyme A(CoA):acetyl-CoA transferase,caproyl-CoA:butyryl-CoA transferase,and caproyl-CoA:acetyl-CoA transferase that are involved in the syntheses of n-butyrate and n-caproate.Furthermore,the composition of the microbial community shifted from Paraclostridium dominance(at 0.1 g∙L^(-1)ammonia)to a co-dominance of Fermentimonas,Clostridium sensu stricto 12,and Clostridium sensu stricto 15 at 2.0 g∙L^(-1)ammonia.However,these CE-functional bacteria were mostly absent in the presence of excessive ammonia(5.0 g∙L^(-1)ammonia).Metagenomic analysis revealed the upregulation of functions such as RBO,fatty acid synthesis,K^(+)efflux,adenosine triphosphatase(ATPase)metabolism,and metal cation export in the presence of 2.0 g∙L^(-1)ammonia,collectively contributing to enhanced n-caproate production.Conversely,the aforementioned functions(excluding metal cation export)and K^(+)influx were suppressed by excessive ammonia,undermining both ammonia detoxification and n-caproate biosynthesis.The comprehensive elucidation of ammonia-driven mechanisms influencing n-caproate production,as provided in this study,is expected to inspire researchers to devise effective strategies to alleviate ammonia-induced inhibition.
基金financially supported by the National Key Research and Development Program of China(2022YFD190160304)Natural Science Foundation of Sichuan Province(2022NSFSC0013)+1 种基金Sichuan Maize Innovation Team Construction Project(SCCXTD-2022-02)National Key Research and Development Program of China(2018YFD0301206)。
文摘Regulating planting density and nitrogen(N)fertilization could delay chlorophyll(Chl)degradation and leaf senescence in maize cultivars.This study measured changes in ear leaf green area(GLA_(ear)),Chl content,the activities of Chl a-degrading enzymes after silking,and the post-silking dry matter accumulation and grain yield under multiple planting densities and N fertilization rates.The dynamic change of GLA_(ear)after silking fitted to the logistic model,and the GLA_(ear) duration and the GLAearat 42 d after silking were affected mainly by the duration of the initial senescence period(T_(1))which was a key factor of the leaf senescence.The average chlorophyllase(CLH)activity was 8.3 times higher than pheophytinase activity and contributed most to the Chl content,indicating that CLH is a key enzyme for degrading Chl a in maize.Increasing density increased the CLH activity and decreased the Chl content,T1,GLAear,and GLA_(ear) duration.Under high density,appropriate N application reduced CLH activity,increased Chl content,prolonged T1,alleviated high-density-induced leaf senescence,and increased post-silking dry matter accumulation and grain yield.
基金supported by the Major Science and Technology Plan of Hainan Province (Grant No.ZDKJ2021010),ChinaNational Key Research and Development Program,(Grant No.2018YFD1000800) Chinathe National Natural Science Foundation (Grant No.31660091),China。
文摘This study assessed the influence of exogenous ME in the mitigation of cold damage in pepper seedlings. Melatonin(ME) is a dynamic molecule that helps plants cope with stress in several ways. Cold stress(CS) is one of the most important environmental factors that restrict plant growth and yield. Pepper(Capsicum annuum L.) is a valuable commercial crop, highly sensitive to CS. Thus, identifying an efficient strategy to mitigate cold damage is critical for long-term pepper production. For this purpose, the roots of pepper seedlings were pretreated with ME(5 μmol · L^(-1)) and exposed to CS for 7 d. The results indicated that CS suppressed pepper growth, hampered photosynthetic capacity, and damaged root architecture in pepper plants. In contrast, the production of reactive oxygen species(ROS), malondialdehyde(MDA), electrolyte leakage(EL), proline, and soluble sugars were enhanced in plants under CS. ME(5 μmol · L^(-1)) pretreatment reduced the negative effects of CS by recovering plant growth, root traits, gas exchange elements, and pigment molecules compared to CS control treatment. Furthermore, ME application efficiently reduced oxidative stress markers [hydrogen peroxide(H_(2)O_(2)), superoxide ion(O_(2)^(·-)), EL, and MDA] while increasing proline and soluble sugar content in pepper leaves. ME application combined with CS further increased antioxidant enzymes and related gene expression. Collectively, our results confirmed the mitigating potential of ME supplementation for CS by maintaining pepper seedling growth,improving the photosynthesis apparatus, regulating pigments, and osmolyte content.
基金the National Key R&D Program of China(2022YFD21007002)the National Natural Science Foundation of China(32325040)+1 种基金Inner Mongolia Science&Technology planning project(2022YFSJ0017)the earmarked fund for CARS36.
文摘Recent research on the genome of Bifidobacterium bifidum has mainly focused on the isolation sources(intestinal tract niche)recently,but reports on the isolation region are limited.This study analyzed the differences in the genome of B.bifidum isolated from different geographical populations by comparative genomic analysis.Results at the genome level indicated that the GC content of American isolates was significantly higher than that of Chinese and Russian isolates.The phylogenetic tree,based on 919 core genes showed that B.bifidum might be related to the geographical characteristics of isolation region.Furthermore,functional annotation analysis demonstrated that copy numbers of carbohydrate-active enzymes(CAZys)involved in the degradation of polysaccharide from plant and host sources in B.bifidum were high,and 18 CAZys showed significant differences across different geographical populations,indicating that B.bifidum had adapted to the human intestinal environment,especially in the groups with diets rich in fiber.Dietary habits were one of the main reasons for the differences of B.bifidum across different geographical populations.Additionally,B.bifidum exhibited high diversity,evident in glycoside hydrolases,the CRISPR-Cas system,and prophages.This study provides a genetic basis for further research and development of B.bifidum.
基金funded by the National Natural Science Foundation of China(31972281)。
文摘Cyperus difformis L.is a troublesome weed in paddy fields and has attracted attention due to its resistance to acetohydroxyacid synthase(AHAS)inhibitors.It was found that the amino acid mutation in AHAS was the primary cause for the resistance of Cyperus difformis.However,the effect of different mutations on AHAS function is not clear in Cyperus difformis.To confirm the effect of mutations on AHAS function,six biotypes were collected,including Pro197Arg,Pro197Ser,Pro197Leu,Asp376Glu,Trp574Leu and wild type,from Hunan,Anhui,Jiangxi and Jiangsu provinces,China and the function of AHAS was characterized.The AHAS in vitro inhibition assay results indicated that the mutations decreased the sensitivity of AHAS to pyrazosulfuron-ethyl,in which the I_(50)(the half maximal inhibitory concentration)of wild type AHAS was 0.04μmol L^(-1)and Asp376Glu,Pro197Leu,Pro197Arg,Pro197Ser and Trp574Leu mutations were 3.98,11.50,40.38,38.19 and 311.43μmol L^(-1),respectively.In the determination of enzyme kinetics parameters,the Km and the maximum reaction velocity(Vmax)of the wild type were 5.18 mmol L^(-1)and 0.12 nmol mg^(-1)min^(-1),respectively,and the Km values of AHAS with Asp376Glu,Trp574Leu,Pro197Leu and Pro197Ser mutations were 0.38-0.93 times of the wild type.The Km value of the Pro197Arg mutation was 1.14times of the wild type,and the Vmax values of the five mutations were 1.17-3.33-fold compared to the wild type.It was found that the mutations increased the affinity of AHAS to the substrate,except for the Pro197Arg mutation.At a concentration of 0.0032-100 mmol L^(-1)branched-chain amino acids(BCAAs),the sensitivity of the other four mutant AHAS biotypes to feedback inhibition decreased,except for the Pro197Arg mutation.This study elucidated the effect of different mutations on AHAS function in Cyperus difformis and provided ideas for further study of resistance development.
基金supported by the National Key Research and Development Program of China(Grant No.2018YFE0106200)the Science and Technology Research Project of Jiangxi Provincial Department of Education,China(Grant No.K4100131)the Science and Technology Research Project of Shangrao,Jiangxi Province,China(Grant No.K4000019).
文摘Nostoc flagelliforme is a terrestrial cyanobacterium that can resist many types of stressors,including drought,ultraviolet radiation,and extreme temperatures.In this study,we identified the drought tolerance gene NfcrtO,which encodes aβ-carotene ketolase,through screening the transcriptome of N.flagelliforme under water loss stress.Prokaryotic expression of NfcrtO under 0.6 mol/L sorbitol or under 0.3 mol/L NaCl stress significantly increased the growth rate of Escherichia coli.When NfcrtO was heterologously expressed in rice,the seedling height and root length of NfcrtO-overexpressing rice plants were significantly higher than those of the wild type(WT)plants grown on½Murashige and Skoog solid medium with 120 mmol/L mannitol at the seedling stage.Transcriptome analysis revealed that NfcrtO was involved in osmotic stress,antioxidant,and other stress-related pathways.Additionally,the survival rate of the NfcrtO-overexpression lines was significantly higher than that of the WT line under both hydroponic stress(24%PEG and 100 mmol/L H_(2)O_(2))and soil drought treatment at the seedling stage.Physiological traits,including the activity levels of superoxide dismutase,peroxidase,catalase,total antioxidant capacity,and the contents of proline,trehalose,and soluble sugar,were significantly improved in the NfcrtO-overexpression lines relative to those in the WT line under 20%PEG treatment.Furthermore,when water was withheld at the booting stage,the grain yield per plant of NfcrtO-overexpression lines was significantly higher than that of the WT line.Yeast two-hybrid analysis identified interactions between NfcrtO and Dna J protein,E3 ubiquitin-protein ligase,and pyrophosphate-energized vacuolar membrane proton pump.Thus,heterologous expression of NfcrtO in rice could significantly improve the tolerance of rice to osmotic stress,potentially facilitating the development of new rice varieties.