This paper introduces an intelligent framework for predicting the advancing speed during earth pressure balance(EPB)shield tunnelling.Five artificial intelligence(AI)models based on machine and deep learning technique...This paper introduces an intelligent framework for predicting the advancing speed during earth pressure balance(EPB)shield tunnelling.Five artificial intelligence(AI)models based on machine and deep learning techniques-back-propagation neural network(BPNN),extreme learning machine(ELM),support vector machine(SVM),long-short term memory(LSTM),and gated recurrent unit(GRU)-are used.Five geological and nine operational parameters that influence the advancing speed are considered.A field case of shield tunnelling in Shenzhen City,China is analyzed using the developed models.A total of 1000 field datasets are adopted to establish intelligent models.The prediction performance of the five models is ranked as GRU>LSTM>SVM>ELM>BPNN.Moreover,the Pearson correlation coefficient(PCC)is adopted for sensitivity analysis.The results reveal that the main thrust(MT),penetration(P),foam volume(FV),and grouting volume(GV)have strong correlations with advancing speed(AS).An empirical formula is constructed based on the high-correlation influential factors and their corresponding field datasets.Finally,the prediction performances of the intelligent models and the empirical method are compared.The results reveal that all the intelligent models perform better than the empirical method.展开更多
Proper regulation of the earth pressure on the bulkhead of earth-pressure balanced(EPB)shield tunneling machines is significant to ensure safe construction.This study proposes a procedure for regulating the bulkhead p...Proper regulation of the earth pressure on the bulkhead of earth-pressure balanced(EPB)shield tunneling machines is significant to ensure safe construction.This study proposes a procedure for regulating the bulkhead pressure by combining numerical simulations and data mining,and applies the procedure to a metro line constructed in sandy pebble stratum using EPB shield.Firstly,the relationship between the bulkhead pressure and the pressure on the tunnel face is carefully obtained from discrete element modeling,and the required supporting earth pressure is derived by considering the arching effect.Secondly,aided with the machine learning method,a model is constructed for predicting the average bulkhead pressure per ring according to the operational parameters(i.e.,the average driving speed and the rotation speed of the screw conveyor).Given the target value of the bulkhead pressure,the optimal values of the operational parameters are obtained from the model.In addition,an autoregressive moving average stochastic process model is developed to monitor the real-time fluctuation of the bulkhead pressure and guide the actions taken in time to avoid dramatic fluctuations.The results indicate that the pressure difference between the tunnel face and the bulkhead is considerable,and the consideration of the arching effect can avoid overestimating the bulkhead pressure.A combination of the machine learning model and the stochastic process model provides a plausible performance in regulating the bulkhead pressure around the target value without dramatic fluctuation.展开更多
The spewing of a screw conveyor easily occurs from the earth pressure balance(called EPB)shield in a water-rich sand stratum.This may lead to the collapse of the tunnel face and even serious subsidence of the ground s...The spewing of a screw conveyor easily occurs from the earth pressure balance(called EPB)shield in a water-rich sand stratum.This may lead to the collapse of the tunnel face and even serious subsidence of the ground surface.To understand the spewing mechanism of the shield screw conveyor and explore the critical hydraulic condition of soil spewing in a shield–soil chamber,a simplified theoretical model for the spewing of the screw conveyor was developed based on the equation of groundwater flow in the screw conveyor under turbulent state.Thus,coupling Darcy's law with Brinkman's equation,this model was implemented within the COMSOL Multiphysics framework.The underground water flow in the shield screw conveyor was simulated so as to obtain its velocity and flow rate.Numerical simulations show that the water pressure distribution is concentrated in the lower part of the soil chamber after the groundwater enters the soil chamber.When the groundwater enters the screw conveyor,its pressure gradually decreases along the direction of the screw conveyor.When the water flow reaches the stratum–shield interface,the flow velocity changes markedly:first increases and concentrates at the entrance of the lower soil chamber,plummets and stabilizes gradually,and increases again at the exit.The soil chamber and screw conveyor are significantly depressurized.It is also found that the soil permeability coefficient can be reduced to k<2.6×10^(−4)cm/s through appropriate soil improvement,which can effectively prevent the occurrence of spewing disasters.展开更多
This paper mainly deals with the critical technology of earth pressure balance (EPB) control in shield tunneling. On the assumption that the conditioned soil in the working chamber of the shield is plasticized, a theo...This paper mainly deals with the critical technology of earth pressure balance (EPB) control in shield tunneling. On the assumption that the conditioned soil in the working chamber of the shield is plasticized, a theoretical principle for EPB control is proposed. Dynamic equilibrium of intake volume and discharge volume generated by thrust and discharge is modeled theoretically to simulate the earth pressure variation during excavating. The thrust system and the screw conveyor system for earth pressure control are developed based on the electro-hydraulic technique. The control models of the thrust speed regulation of the cylinders and the rotating speed adjustment of the screw conveyor are also presented. Simulation for earth pressure control is conducted with software AMESim and MATLAB/Simulink to verify the models. Experiments are carried out with intake control in clay soil and discharge control in sandy gravel section, respectively. The experimental results show that the earth pressure variations in the working chamber can be kept at the expected value with a practically acceptable precision by means of real-time tuning the thrust speed or the revolving speed of discharge system.展开更多
When earth pressure balance (EPB) shield tunnels are constructed through clayey ground, the soil adheres to the cutter, cutterheadand chamber bulkhead due to the high adhesion strength between the steel and the clay, ...When earth pressure balance (EPB) shield tunnels are constructed through clayey ground, the soil adheres to the cutter, cutterheadand chamber bulkhead due to the high adhesion strength between the steel and the clay, thus clogging the shield. To investigatethe influence of different factors on the adhesion strength, this study used montmorillonite, kaolin and mixtures of the two as testsoils. The adhesion strength between the steel and clay is determined with a customized rotary shear apparatus. The results showthat when the consistency index of the soil specimen is less than 1, the adhesion strength between the steel and clay increaseswith the consistency index. As the consistency index decreases, the effect of the normal pressure on the adhesion strength graduallyweakened. As the contact angle of the shear plate increases, thus reducing the hydrophilicity, the adhesion strength decreases. Whenthe soil specimens with different plasticity index values have the same consistency index value, the adhesion strengths are similar.The adhesion strength increases gradually with increasing surface roughness. Based on grey incidence analysis, the order of thefactors affecting the adhesion strength is as follows: normal pressure > consistency index > contact angle > plasticity index ≈ surfaceroughness. The normal pressure, consistency index and contact angle all have important effects on the adhesion strength betweensteel and clay. However, because there are no large differences in the contact angle among the metal materials, the approximateadhesion strength can be calculated by considering the effects of only the normal pressure and consistency index. Themeasures thatare effective for preventing EPB shield clogging are increasing the soil softness and decreasing the hydrophilicity of the cutterheadby applying new materials for the cutters and cutterhead.展开更多
Water spewing and muck plugging often occur during earth pressure balance(EPB)shield machines tunnelling in water-rich sandy strata,even though the conventional foam has been employed to condition sandy soils.In this ...Water spewing and muck plugging often occur during earth pressure balance(EPB)shield machines tunnelling in water-rich sandy strata,even though the conventional foam has been employed to condition sandy soils.In this study,a novel thickened foaming agent suitable for EPB shield tunnelling in water-rich sandy strata is developed.In contrast to conventional foam-conditioned sands,the thickened foam-conditioned sand has a low permeability due to the consistent filling of soil pores with the thickened foam,and the initial permeability coefficient decreases by approximately two orders of magnitude.It also exhibits a suitable workability,which is attributed to the enhanced capability of the thickened foam to condition sandy soils.In addition,the effect of concentration on the stability of the foam is explained by the Gibbs-Marangoni effect,and conditioning mechanisms for the thickened foam on sands are discussed from the evolution of foam bubbles.展开更多
基金funded by“The Pearl River Talent Recruitment Program”in 2019(Grant No.2019CX01G338),。
文摘This paper introduces an intelligent framework for predicting the advancing speed during earth pressure balance(EPB)shield tunnelling.Five artificial intelligence(AI)models based on machine and deep learning techniques-back-propagation neural network(BPNN),extreme learning machine(ELM),support vector machine(SVM),long-short term memory(LSTM),and gated recurrent unit(GRU)-are used.Five geological and nine operational parameters that influence the advancing speed are considered.A field case of shield tunnelling in Shenzhen City,China is analyzed using the developed models.A total of 1000 field datasets are adopted to establish intelligent models.The prediction performance of the five models is ranked as GRU>LSTM>SVM>ELM>BPNN.Moreover,the Pearson correlation coefficient(PCC)is adopted for sensitivity analysis.The results reveal that the main thrust(MT),penetration(P),foam volume(FV),and grouting volume(GV)have strong correlations with advancing speed(AS).An empirical formula is constructed based on the high-correlation influential factors and their corresponding field datasets.Finally,the prediction performances of the intelligent models and the empirical method are compared.The results reveal that all the intelligent models perform better than the empirical method.
基金supported by the National Natural ScienceFoundation of China(Grant No.41672360)Science and Technology Commission of Shanghai Munici-pality(Grant No.17DZ1203800)Shanghai Shentong Metro Group Co.,Ltd.(Grant No.17DZ1203804).
文摘Proper regulation of the earth pressure on the bulkhead of earth-pressure balanced(EPB)shield tunneling machines is significant to ensure safe construction.This study proposes a procedure for regulating the bulkhead pressure by combining numerical simulations and data mining,and applies the procedure to a metro line constructed in sandy pebble stratum using EPB shield.Firstly,the relationship between the bulkhead pressure and the pressure on the tunnel face is carefully obtained from discrete element modeling,and the required supporting earth pressure is derived by considering the arching effect.Secondly,aided with the machine learning method,a model is constructed for predicting the average bulkhead pressure per ring according to the operational parameters(i.e.,the average driving speed and the rotation speed of the screw conveyor).Given the target value of the bulkhead pressure,the optimal values of the operational parameters are obtained from the model.In addition,an autoregressive moving average stochastic process model is developed to monitor the real-time fluctuation of the bulkhead pressure and guide the actions taken in time to avoid dramatic fluctuations.The results indicate that the pressure difference between the tunnel face and the bulkhead is considerable,and the consideration of the arching effect can avoid overestimating the bulkhead pressure.A combination of the machine learning model and the stochastic process model provides a plausible performance in regulating the bulkhead pressure around the target value without dramatic fluctuation.
基金National Natural Science Foundation of China,Grant/Award Number:U1261212。
文摘The spewing of a screw conveyor easily occurs from the earth pressure balance(called EPB)shield in a water-rich sand stratum.This may lead to the collapse of the tunnel face and even serious subsidence of the ground surface.To understand the spewing mechanism of the shield screw conveyor and explore the critical hydraulic condition of soil spewing in a shield–soil chamber,a simplified theoretical model for the spewing of the screw conveyor was developed based on the equation of groundwater flow in the screw conveyor under turbulent state.Thus,coupling Darcy's law with Brinkman's equation,this model was implemented within the COMSOL Multiphysics framework.The underground water flow in the shield screw conveyor was simulated so as to obtain its velocity and flow rate.Numerical simulations show that the water pressure distribution is concentrated in the lower part of the soil chamber after the groundwater enters the soil chamber.When the groundwater enters the screw conveyor,its pressure gradually decreases along the direction of the screw conveyor.When the water flow reaches the stratum–shield interface,the flow velocity changes markedly:first increases and concentrates at the entrance of the lower soil chamber,plummets and stabilizes gradually,and increases again at the exit.The soil chamber and screw conveyor are significantly depressurized.It is also found that the soil permeability coefficient can be reduced to k<2.6×10^(−4)cm/s through appropriate soil improvement,which can effectively prevent the occurrence of spewing disasters.
基金Supported by the National Outstanding Youth Foundation of China (Grant No. 50425518)the National Basic Research Program of China ("973" Project) (Grant No. 2007CB714004)
文摘This paper mainly deals with the critical technology of earth pressure balance (EPB) control in shield tunneling. On the assumption that the conditioned soil in the working chamber of the shield is plasticized, a theoretical principle for EPB control is proposed. Dynamic equilibrium of intake volume and discharge volume generated by thrust and discharge is modeled theoretically to simulate the earth pressure variation during excavating. The thrust system and the screw conveyor system for earth pressure control are developed based on the electro-hydraulic technique. The control models of the thrust speed regulation of the cylinders and the rotating speed adjustment of the screw conveyor are also presented. Simulation for earth pressure control is conducted with software AMESim and MATLAB/Simulink to verify the models. Experiments are carried out with intake control in clay soil and discharge control in sandy gravel section, respectively. The experimental results show that the earth pressure variations in the working chamber can be kept at the expected value with a practically acceptable precision by means of real-time tuning the thrust speed or the revolving speed of discharge system.
基金the National Natural Science Foundation of China(Grant Nos.52022112 and 51778637)are acknowl-edged and appreciated。
文摘When earth pressure balance (EPB) shield tunnels are constructed through clayey ground, the soil adheres to the cutter, cutterheadand chamber bulkhead due to the high adhesion strength between the steel and the clay, thus clogging the shield. To investigatethe influence of different factors on the adhesion strength, this study used montmorillonite, kaolin and mixtures of the two as testsoils. The adhesion strength between the steel and clay is determined with a customized rotary shear apparatus. The results showthat when the consistency index of the soil specimen is less than 1, the adhesion strength between the steel and clay increaseswith the consistency index. As the consistency index decreases, the effect of the normal pressure on the adhesion strength graduallyweakened. As the contact angle of the shear plate increases, thus reducing the hydrophilicity, the adhesion strength decreases. Whenthe soil specimens with different plasticity index values have the same consistency index value, the adhesion strengths are similar.The adhesion strength increases gradually with increasing surface roughness. Based on grey incidence analysis, the order of thefactors affecting the adhesion strength is as follows: normal pressure > consistency index > contact angle > plasticity index ≈ surfaceroughness. The normal pressure, consistency index and contact angle all have important effects on the adhesion strength betweensteel and clay. However, because there are no large differences in the contact angle among the metal materials, the approximateadhesion strength can be calculated by considering the effects of only the normal pressure and consistency index. Themeasures thatare effective for preventing EPB shield clogging are increasing the soil softness and decreasing the hydrophilicity of the cutterheadby applying new materials for the cutters and cutterhead.
基金The financial support from the National Natural Science Foundation of China(Grant No.52022112)the Fundamental Research Funds for the Central South University(Grant No.2023ZZTS0366)are acknowledged and appreciated.The authors are also grateful for the help from Dr.Ji Zhao of China University of Mining and Technology.
文摘Water spewing and muck plugging often occur during earth pressure balance(EPB)shield machines tunnelling in water-rich sandy strata,even though the conventional foam has been employed to condition sandy soils.In this study,a novel thickened foaming agent suitable for EPB shield tunnelling in water-rich sandy strata is developed.In contrast to conventional foam-conditioned sands,the thickened foam-conditioned sand has a low permeability due to the consistent filling of soil pores with the thickened foam,and the initial permeability coefficient decreases by approximately two orders of magnitude.It also exhibits a suitable workability,which is attributed to the enhanced capability of the thickened foam to condition sandy soils.In addition,the effect of concentration on the stability of the foam is explained by the Gibbs-Marangoni effect,and conditioning mechanisms for the thickened foam on sands are discussed from the evolution of foam bubbles.