In the United States,schools offer special education services to children who are diagnosed with a learning or neurodevelopmental disorder and have difficulty meeting their learning goals.Pediatricians may play a key ...In the United States,schools offer special education services to children who are diagnosed with a learning or neurodevelopmental disorder and have difficulty meeting their learning goals.Pediatricians may play a key role in helping children access special education services.The number of children ages 6-21 in the United States receiving special education services increased 10.4%from 2006 to 2021.Children receiving special education services under the autism category increased 242%during the same period.The demand for special education services for children under the developmental delay and other health impaired categories increased by 184%and 83%respectively.Although student enrollment in American schools has remained stable since 2006,the percentage distribution of children receiving special education services nearly tripled for the autism category and quadrupled for the developmental delay category by 2021.Allowable heavy metal residues remain persistent in the American food supply due to food ingredient manufacturing processes.Numerous clinical trial data indicate heavy metal exposures and poor diet are the primary epigenetic factors responsible for the autism and attention deficit hyperactivity disorder epidemics.Dietary heavy metal exposures,especially inorganic mercury and lead may impact gene behavior across generations.In 2021,the United States Congress found heavy metal residues problematic in the American food supply but took no legislative action.Mandatory health warning labels on select foods may be the only way to reduce dietary heavy metal exposures and improve child learning across generations.展开更多
Cellular senescence assumes pivotal roles in various diseases through the secretion of proinflammatory factors.Despite extensive investigations into vascular senescence associated with aging and degenerative diseases,...Cellular senescence assumes pivotal roles in various diseases through the secretion of proinflammatory factors.Despite extensive investigations into vascular senescence associated with aging and degenerative diseases,the molecular mechanisms governing microvascular endothelial cell senescence induced by traumatic stress,particularly its involvement in senescence-induced inflammation,remain insufficiently elucidated.In this study,we present a comprehensive demonstration and characterization of microvascular endothelial cell senescence induced by spinal cord injury(SCI).Lysine demethylase 6A(Kdm6a),commonly known as UTX,emerges as a crucial regulator of cell senescence in injured spinal cord microvascular endothelial cells(SCMECs).Upregulation of UTX induces senescence in SCMECs,leading to an amplified release of proinflammatory factors,specifically the senescenceassociated secretory phenotype(SASP)components,thereby modulating the inflammatory microenvironment.Conversely,the deletion of UTX in endothelial cells shields SCMECs against senescence,mitigates the release of proinflammatory SASP factors,and promotes neurological functional recovery after SCI.UTX forms an epigenetic regulatory axis by binding to calponin 1(CNN1),orchestrating trauma-induced SCMECs senescence and SASP secretion,thereby influencing neuroinflammation and neurological functional repair.Furthermore,local delivery of a senolytic drug reduces senescent SCMECs and suppresses proinflammatory SASP secretion,reinstating a local regenerative microenvironment and enhancing functional repair after SCI.In conclusion,targeting the UTX-CNN1 epigenetic axis to prevent trauma-induced SCMECs senescence holds the potential to inhibit SASP secretion,alleviate neuroinflammation,and provide a novel treatment strategy for SCI repair.展开更多
Alzheimer’s disease is a progressive neurodegenerative disorder and the most common cause of dementia that principally affects older adults.Pathogenic factors,such as oxidative stress,an increase in acetylcholinester...Alzheimer’s disease is a progressive neurodegenerative disorder and the most common cause of dementia that principally affects older adults.Pathogenic factors,such as oxidative stress,an increase in acetylcholinesterase activity,mitochondrial dysfunction,genotoxicity,and neuroinflammation are present in this syndrome,which leads to neurodegeneration.Neurodegenerative pathologies such as Alzheimer’s disease are considered late-onset diseases caused by the complex combination of genetic,epigenetic,and environmental factors.There are two main types of Alzheimer’s disease,known as familial Alzheimer’s disease(onset<65 years)and late-onset or sporadic Alzheimer’s disease(onset≥65 years).Patients with familial Alzheimer’s disease inherit the disease due to rare mutations on the amyloid precursor protein(APP),presenilin 1 and 2(PSEN1 and PSEN2)genes in an autosomaldominantly fashion with closely 100%penetrance.In contrast,a different picture seems to emerge for sporadic Alzheimer’s disease,which exhibits numerous non-Mendelian anomalies suggesting an epigenetic component in its etiology.Importantly,the fundamental pathophysiological mechanisms driving Alzheimer’s disease are interfaced with epigenetic dysregulation.However,the dynamic nature of epigenetics seems to open up new avenues and hope in regenerative neurogenesis to improve brain repair in Alzheimer’s disease or following injury or stroke in humans.In recent years,there has been an increase in interest in using natural products for the treatment of neurodegenerative illnesses such as Alzheimer’s disease.Through epigenetic mechanisms,such as DNA methylation,non-coding RNAs,histone modification,and chromatin conformation regulation,natural compounds appear to exert neuroprotective effects.While we do not purport to cover every in this work,we do attempt to illustrate how various phytochemical compounds regulate the epigenetic effects of a few Alzheimer’s disease-related genes.展开更多
Objective:Epigenetic abnormalities have a critical role in breast cancer by regulating gene expression;however,the intricate interrelationships and key roles of approximately 400 epigenetic regulators in breast cancer...Objective:Epigenetic abnormalities have a critical role in breast cancer by regulating gene expression;however,the intricate interrelationships and key roles of approximately 400 epigenetic regulators in breast cancer remain elusive.It is important to decipher the comprehensive epigenetic regulatory network in breast cancer cells to identify master epigenetic regulators and potential therapeutic targets.Methods:We employed high-throughput sequencing-based high-throughput screening(HTS^(2))to effectively detect changes in the expression of 2,986 genes following the knockdown of 400 epigenetic regulators.Then,bioinformatics analysis tools were used for the resulting gene expression signatures to investigate the epigenetic regulations in breast cancer.Results:Utilizing these gene expression signatures,we classified the epigenetic regulators into five distinct clusters,each characterized by specific functions.We discovered functional similarities between BAZ2B and SETMAR,as well as CLOCK and CBX3.Moreover,we observed that CLOCK functions in a manner opposite to that of HDAC8 in downstream gene regulation.Notably,we constructed an epigenetic regulatory network based on the gene expression signatures,which revealed 8 distinct modules and identified 10 master epigenetic regulators in breast cancer.Conclusions:Our work deciphered the extensive regulation among hundreds of epigenetic regulators.The identification of 10 master epigenetic regulators offers promising therapeutic targets for breast cancer treatment.展开更多
In recent years, sarcopenia, as a progressive muscular atrophy and weakness, has become one of the common diseases in the elderly. Although its cause is not fully understood, a growing body of research suggests that e...In recent years, sarcopenia, as a progressive muscular atrophy and weakness, has become one of the common diseases in the elderly. Although its cause is not fully understood, a growing body of research suggests that epigenetic mechanisms play an important role in the pathogenesis of sarcopenia. The purpose of this review is to summarize the current research progress in the epigenetics of sarcopenia, focusing on the role of DNA methylation, RNA methylation and non-coding RNA in the pathogenesis of sarcopenia. While exploring the epigenetic mechanism of sarcopenia, this study will also look into the application prospect of epigenetics in the treatment strategy of sarcopenia, which will provide new ideas and directions for the treatment of sarcopenia.展开更多
Epigenetic changes are changes in gene expression by regulating gene transcription and translation without changing the nucleotide sequence of the genome. Although the genome itself changes during the occurrence and d...Epigenetic changes are changes in gene expression by regulating gene transcription and translation without changing the nucleotide sequence of the genome. Although the genome itself changes during the occurrence and development of most malignant tumors, recent studies have found that epigenetic changes also play an important role in the occurrence and development of tumors. Epigenetic modification mainly includes DNA methylation, histone modification and miRNA regulation. This review focuses on the role and mechanism of epigenetic modification in the occurrence, metastasis and invasion of hepatocellular carcinoma (HCC), and summarizes the latest methods for the treatment of HCC by restoring dysregulated epigenetic modification. It provides a theoretical basis for revealing the pathogenesis of liver cancer and developing new methods of diagnosis and treatment.展开更多
This editorial comments on the manuscript by Chang et al,focusing on the still elusive interplay between epigenetic regulation and autophagy in gastrointestinal diseases,particularly cancer.Autophagy,essential for cel...This editorial comments on the manuscript by Chang et al,focusing on the still elusive interplay between epigenetic regulation and autophagy in gastrointestinal diseases,particularly cancer.Autophagy,essential for cellular homeostasis,exhibits diverse functions ranging from cell survival to death,and is particularly implicated in physiological gastrointestinal cell functions.However,its role in pathological backgrounds remains intricate and context-dependent.Studies underscore the dual nature of autophagy in cancer,where its early suppressive effects in early stages are juxtaposed with its later promotion,contributing to chemoresistance.This discrepancy is attributed to the dysregulation of autophagy-related genes and their intricate involvement in cellular processes.Epigenetic modifications and regulations of gene expression,including non-coding RNAs(ncRNAs),emerge as critical players in exerting regulatory control over autophagy flux,influencing treatment responses and tumor progression.Targeting epigenetic mechanisms and improving strategies involving the inhibition or induction of autophagy through pharmacological or genetic means present potential avenues to sensitize tumor cells to chemotherapy.Additionally,nanocarrier-based delivery of ncRNAs offers innovative therapeutic approaches.Understanding the intricate interaction between autophagy and ncRNA regula-tion opens avenues for the development of targeted therapies,thereby improving the prognosis of gastrointestinal malignancies with poor outcomes.展开更多
Ewing’s sarcoma(EWS)is a highly aggressive malignant bone tumor primarily affecting adolescents and young adults.Despite the efficacy of chemoradiotherapy in some cases,the cure rate for patients with metastatic and ...Ewing’s sarcoma(EWS)is a highly aggressive malignant bone tumor primarily affecting adolescents and young adults.Despite the efficacy of chemoradiotherapy in some cases,the cure rate for patients with metastatic and recurrent disease remains low.Therefore,there is an urgent need for innovative therapeutic approaches to address the challenges associated with EWS treatment.Epigenetic regulation,a crucial factor in physiological processes,plays a significant role in controlling cell proliferation,maintaining gene integrity,and regulating transcription.Recent studies highlight the importance of abnormal epigenetic regulation in the initiation and progression of EWS.A comprehensive understanding of the intricate interactions between EWS and aberrant epigenetic regulation is essential for advancing clinical drug development.This review aims to provide a comprehensive overview of both epigenetic targets implicated in EWS,integrating various therapeutic modalities to offer innovative perspectives for the clinical diagnosis and treatment of EWS.展开更多
"Synthetic"allopolyploids recreated by interspecific hybridization play an important role in providing novel genomic variation for crop improvement.Such synthetic allopolyploids often undergo rapid genomic s..."Synthetic"allopolyploids recreated by interspecific hybridization play an important role in providing novel genomic variation for crop improvement.Such synthetic allopolyploids often undergo rapid genomic structural variation(SV).However,how such SV arises,is inherited and fixed,and how it affects important traits,has rarely been comprehensively and quantitively studied in advanced generation synthetic lines.A better understanding of these processes will aid breeders in knowing how to best utilize synthetic allopolyploids in breeding programs.Here,we analyzed three genetic mapping populations(735 DH lines)derived from crosses between advanced synthetic and conventional Brassica napus(rapeseed)lines,using whole-genome sequencing to determine genome composition.We observed high tolerance of large structural variants,particularly toward the telomeres,and preferential selection for balanced homoeologous exchanges(duplication/deletion events between the A and C genomes resulting in retention of gene/chromosome dosage between homoeologous chromosome pairs),including stable events involving whole chromosomes("pseudoeuploidy").Given the experimental design(all three populations shared a common parent),we were able to observe that parental SV was regularly inherited,showed genetic hitchhiking effects on segregation,and was one of the major factors inducing adjacent novel and larger SV.Surprisingly,novel SV occurred at low frequencies with no significant impacts on observed fertility and yield-related traits in the advanced generation synthetic lines.However,incorporating genome-wide SV in linkage mapping explained significantly more genetic variance for traits.Our results provide a framework for detecting and understanding the occurrence and inheritance of genomic SV in breeding programs,and support the use of synthetic parents as an important source of novel trait variation.展开更多
Inflammatory bowel disease(IBD)is the consequence of a complex interplay between environmental factors,like dietary habits,that alter intestinal microbiota in response to luminal antigens in genetically susceptible in...Inflammatory bowel disease(IBD)is the consequence of a complex interplay between environmental factors,like dietary habits,that alter intestinal microbiota in response to luminal antigens in genetically susceptible individuals.Epigenetics represents an auspicious area for the discovery of how environmental factors influence the pathogenesis of inflammation,prognosis,and response to therapy.Consequently,it relates to gene expression control in response to environmental influences.The increasing number of patients with IBD globally is indicative of the negative effects of a food supply rich in trans and saturated fats,refined su-gars,starches and additives,as well as other environmental factors like seden-tarism and excess bodyweight,influencing the promotion of gene expression and increasing DNA hypomethylation in IBD.As many genetic variants are now associated with Crohn's disease(CD),new therapeutic strategies targeting modi-fiable environmental triggers,such as the implementation of an anti-inflammatory diet that involves the removal of potential food antigens,are of growing interest in the current literature.Diet,as a strong epigenetic factor in the pathogenesis of inflammatory disorders like IBD,provides novel insights into the pathophysio-logy of intestinal and extraintestinal inflammatory disorders.展开更多
Gestational diabetes mellitus(GDM)is a pregnancy-related complication characterized by abnormal glucose metabolism in pregnant women and has an important impact on fetal development.As a bridge between the mother and ...Gestational diabetes mellitus(GDM)is a pregnancy-related complication characterized by abnormal glucose metabolism in pregnant women and has an important impact on fetal development.As a bridge between the mother and the fetus,the placenta has nutrient transport functions,endocrine functions,etc.,and can regulate placental nutrient transport and fetal growth and development according to maternal metabolic status.Only by means of placental transmission can changes in maternal hyperglycemia affect the fetus.There are many reports on the placental pathophysiological changes associated with GDM,the impacts of GDM on the growth and development of offspring,and the prevalence of GDM in offspring after birth.Placental epigenetic changes in GDM are involved in the programming of fetal development and are involved in the pathogenesis of later chronic diseases.This paper summarizes the effects of changes in placental nutrient transport function and hormone secretion levels due to maternal hyperglycemia and hyperinsulinemia on the development of offspring as well as the participation of changes in placental epigenetic modifications due to maternal hyperglycemia in intrauterine fetal programming to promote a comprehensive understanding of the impacts of placental epigenetic modifications on the development of offspring from patients with GDM.展开更多
BACKGROUND Prevalence of hepatocellular carcinoma(HCC)is increasing,especially in patients with metabolic dysfunctionassociated steatotic liver disease(MASLD).AIM To investigate rifaximin(RIF)effects on epigenetic/aut...BACKGROUND Prevalence of hepatocellular carcinoma(HCC)is increasing,especially in patients with metabolic dysfunctionassociated steatotic liver disease(MASLD).AIM To investigate rifaximin(RIF)effects on epigenetic/autophagy markers in animals.METHODS Adult Sprague-Dawley rats were randomly assigned(n=8,each)and treated from 5-16 wk:Control[standard diet,water plus gavage with vehicle(Veh)],HCC[high-fat choline deficient diet(HFCD),diethylnitrosamine(DEN)in drinking water and Veh gavage],and RIF[HFCD,DEN and RIF(50 mg/kg/d)gavage].Gene expression of epigenetic/autophagy markers and circulating miRNAs were obtained.RESULTS All HCC and RIF animals developed metabolic-dysfunction associated steatohepatitis fibrosis,and cirrhosis,but three RIF-group did not develop HCC.Comparing animals who developed HCC with those who did not,miR-122,miR-34a,tubulin alpha-1c(Tuba-1c),metalloproteinases-2(Mmp2),and metalloproteinases-9(Mmp9)were significantly higher in the HCC-group.The opposite occurred with Becn1,coactivator associated arginine methyltransferase-1(Carm1),enhancer of zeste homolog-2(Ezh2),autophagy-related factor LC3A/B(Map1 Lc3b),and p62/sequestosome-1(p62/SQSTM1)-protein.Comparing with controls,Map1 Lc3b,Becn1 and Ezh2 were lower in HCC and RIF-groups(P<0.05).Carm1 was lower in HCC compared to RIF(P<0.05).Hepatic expression of Mmp9 was higher in HCC in relation to the control;the opposite was observed for p62/Sqstm1(P<0.05).Expression of p62/SQSTM1 protein was lower in the RIF-group compared to the control(P=0.024).There was no difference among groups for Tuba-1c,Aldolase-B,alpha-fetoprotein,and Mmp2(P>0.05).miR-122 was higher in HCC,and miR-34a in RIF compared to controls(P<0.05).miR-26b was lower in HCC compared to RIF,and the inverse was observed for miR-224(P<0.05).There was no difference among groups regarding miR-33a,miR-143,miR-155,miR-375 and miR-21(P>0.05).CONCLUSION RIF might have a possible beneficial effect on preventing/delaying liver carcinogenesis through epigenetic modulation in a rat model of MASLD-HCC.展开更多
BACKGROUND Esophageal squamous cell carcinoma(ESCC)is a prevalent malignancy with a high morbidity and mortality rate.TMEM100 has been shown to be suppressor gene in a variety of tumors,but there are no reports on the...BACKGROUND Esophageal squamous cell carcinoma(ESCC)is a prevalent malignancy with a high morbidity and mortality rate.TMEM100 has been shown to be suppressor gene in a variety of tumors,but there are no reports on the role of TMEM100 in esophageal cancer(EC).AIM To investigate epigenetic regulation of TMEM100 expression in ESCC and the effect of TMEM100 on ESCC proliferation and invasion.METHODS Firstly,we found the expression of TMEM100 in EC through The Cancer Genome Atlas database.The correlation between TMEM100 gene expression and the survival of patients with EC was further confirmed through Kaplan-Meier analysis.We then added the demethylating agent 5-AZA to ESCC cell lines to explore the regulation of TMEM100 expression by epigenetic modification.To observe the effect of TMEM100 expression on tumor proliferation and invasion by overexpressing TMEM100.Finally,we performed gene set enrichment analysis using the Kyoto Encyclopaedia of Genes and Genomes Orthology-Based Annotation System database to look for pathways that might be affected by TMEM100 and verified the effect of TMEM100 expression on the mitogen-activated protein kinases(MAPK)pathway.RESULTS In the present study,by bioinformatic analysis we found that TMEM100 was lowly expressed in EC patients compared to normal subjects.Kaplan-meier survival analysis showed that low expression of TMEM100 was associated with poor prognosis in patients with EC.Then,we found that the demethylating agent 5-AZA resulted in increased expression of TMEM100 in ESCC cells[quantitative real-time PCR(qRT-PCR)and western blotting].Subsequently,we confirmed that overexpression of TMEM100 leads to its increased expression in ESCC cells(qRT-PCR and western blotting).Overexpression of TMEM100 also inhibited proliferation,invasion and migration of ESCC cells(cell counting kit-8 and clone formation assays).Next,by enrichment analysis,we found that the gene set was significantly enriched in the MAPK signaling pathway.The involvement of TMEM100 in the regulation of MAPK signaling pathway in ESCC cell was subsequently verified by western blotting.CONCLUSION TMEM100 is a suppressor gene in ESCC,and its low expression may lead to aberrant activation of the MAPK pathway.Promoter methylation may play a key role in regulating TMEM100 expression.展开更多
Diabetic kidney disease(DKD)is a clinical syndrome that is one of the major causes of end-stage renal disease(ESRD).The pathogenesis of DKD is complex and multifaceted,with most studies indicating its association with...Diabetic kidney disease(DKD)is a clinical syndrome that is one of the major causes of end-stage renal disease(ESRD).The pathogenesis of DKD is complex and multifaceted,with most studies indicating its association with genetics,advanced glycosylation end-product deposition,polyol pathway and protein C activation,lipid metabolism abnormalities,microcirculatory dysfunction,oxidative stress,inflammatory factors,and the kallikrein-kinin system.Epigenetics is the science studying gene expression regulation without changes in the DNA sequence.In recent years,increasing evidence has shown that epigenetic mechanisms play a crucial role in the initiation and progression of DKD.For instance,epigenetic modifications such as DNA methylation,histone modifications,and non-coding RNAs can influence the expression of DKD-related genes,thereby regulating the development and progression of DKD.On the other hand,metabolic memory is an important concept in DKD research.Metabolic memory refers to the phenomenon where cells maintain a certain metabolic state even after the disappearance of metabolic stress factors.This state can influence cell function and fate.In DKD,metabolic stress factors such as hyperglycemia can lead to metabolic memory in renal cells,affecting their function and fate,ultimately leading to the development and progression of DKD.Therefore,to further explore the pathogenesis of DKD,research on epigenetics should be strengthened,aiming to provide new ideas and methods for the prevention and treatment of DKD.展开更多
Neuroendocrine prostate cancer(NEPC)shows an aggressive behavior compared to prostate cancer(PCa),also known as prostate adenocarcinoma.Scanty foci in PCa can harbor genetic alternation that can arise in a heterogenei...Neuroendocrine prostate cancer(NEPC)shows an aggressive behavior compared to prostate cancer(PCa),also known as prostate adenocarcinoma.Scanty foci in PCa can harbor genetic alternation that can arise in a heterogeneity of prostate cancer.NEPC may arise de novo or develop following androgen deprivation therapy(ADT).NEPC that arise following ADT has the nomenclature“treatmentemerging/induced NEPC(t-NEPC)”.t-NEPC would be anticipated in castration resistant prostate cancer(CRPC)and metastatic PCa.t-NEPC is characterized by low or absent androgen receptor(AR)expression,independence of AR signaling,and gain of neuroendocrine phenotype.t-NEPC is an aggressive metastatic tumor,develops from PCa in response to drug induced ADT,and shows very short response to conventional therapy.t-NEPC occurs in 10%-17%of patients with CRPC.De novo NEPC is rare and is accounting for less than 2%of all PCa.The molecular mechanisms underlying the trans-differentiation from CRPC to t-NEPC are not fully elucidated.Sphingosine kinase 1 plays a significant role in t-NEPC development.Although neuroendocrine markers:Synaptophysin,chromogranin A,and insulinoma associated protein 1(INSM1)are expressed in t-NEPC,they are non-specific for diagnosis,prognosis,and follow-up of therapy.t-NEPC shows enriched genomic alteration in tumor protein P53(TP53)and retinoblastoma 1(RB1).There are evidences suggest that t-NEPC might develop through epigenetic evolution.There are genomic,epigenetic,and transcriptional alterations that are reported to be involved in development of t-NEPC.Knock-outs of TP53 and RB1 were found to contribute in development of t-NEPC.PCa is resistant to immunotherapy,and at present there are running trials to approach immunotherapy for PCa,CRPC,and t-NEPC.展开更多
This study aims to further promote the inheritance and innovative development of intangible cultural heritage in Yunnan Province,promote the protection,inheritance,integration,and innovation of ethnic culture in Lijia...This study aims to further promote the inheritance and innovative development of intangible cultural heritage in Yunnan Province,promote the protection,inheritance,integration,and innovation of ethnic culture in Lijiang,strengthen the protection and inheritance of Baisha murals in Lijiang,and change the teaching of art design majors in vocational colleges in Yunnan.Given the lack of traditional Chinese culture and local ethnic culture,this article focuses on the teaching of art design majors in Yunnan vocational colleges.It explores the construction model of the cultural inheritance and innovation carrier of Lijiang Baisha murals to meet the spiritual and cultural needs of the local people,and efforts will be made to promote the high-quality development of the Baisha ethnic area in Lijiang.展开更多
Inflammatory bowel disease(IBD)has as a main characteristic the exacerbation of the immune system against enterocytes,compromising the individual’s intestinal microbiota.This inflammatory cascade causes several nutri...Inflammatory bowel disease(IBD)has as a main characteristic the exacerbation of the immune system against enterocytes,compromising the individual’s intestinal microbiota.This inflammatory cascade causes several nutritional deficiencies,which further compromise immunological functioning and,as a result,worsen the prognosis.This vicious cycle can be interrupted as the patient’s dietary pattern meets their needs according to their clinical condition,acting directly on the inflammatory process of IBD through the interaction of food,intestinal microbiota,and epigenome.Specific nutritional intervention for IBD has a crucial role in preventing and managing disease activity.This review addresses epigenetic modifications through dietary compounds as a mechanism for modulating the intestinal microbiota of patients with IBD.展开更多
Flower development is one of the most vital pathways in plant development, during which the epigenetic regulation of gene expression is essential. DNA methylation, the most conserved epigenetic modification, participa...Flower development is one of the most vital pathways in plant development, during which the epigenetic regulation of gene expression is essential. DNA methylation, the most conserved epigenetic modification, participates in gene expression regulation and transposable element silencing. Honeysuckle(Lonicera japonica) is an important medicinal plant renowned for its colorful and fragrant flowers. Honeysuckle flowers change color from white to gold as a result of carotenoid accumulation during development. However, the role of DNA methylation in flower color changes is not well understood in L. japonica. Here, we performed whole-genome bisulfite sequencing and transcriptome sequencing during flowering development in honeysuckle. The results showed that a decrease in the levels of genome-wide average DNA methylation during flower development and changes in DNA methylation were associated with the expression of demethylase genes. Moreover, many genes involved in carotenoid biosynthesis and degradation, such as Lj PSY1, LjPDS1, LjLCYE, and LjCCD4, have altered expression levels because of hypomethylation, indicating that DNA methylation plays an important role in flower color changes in honeysuckle. Taken together, our data provide epigenetic insights into flower development and color change in honeysuckles.展开更多
Mental illness remains the greatest chronic health burden globally with few inroads having been made despite significant advances in genomic knowledge in recent decades.The field of psychiatry is constantly challenged...Mental illness remains the greatest chronic health burden globally with few inroads having been made despite significant advances in genomic knowledge in recent decades.The field of psychiatry is constantly challenged to bring new approaches and tools to address and treat the needs of vulnerable individuals and subpopulations,and that has to be supported by a continuous growth in knowledge.The majority of neuropsychiatric symptoms reflect complex geneenvironment interactions,with epigenetics bridging the gap between genetic susceptibility and environmental stressors that trigger disease onset and drive the advancement of symptoms.It has more recently been demonstrated in preclinical models that epigenetics underpins the transgenerational inheritance of stressrelated behavioural phenotypes in both paternal and maternal lineages,providing further supporting evidence for heritability in humans.However,unbiased prospective studies of this nature are practically impossible to conduct in humans so preclinical models remain our best option for researching the molecular pathophysiologies underlying many neuropsychiatric conditions.While rodents will remain the dominant model system for preclinical studies(especially for addressing complex behavioural phenotypes),there is scope to expand current research of the molecular and epigenetic pathologies by using invertebrate models.Here,we will discuss the utility and advantages of two alternative model organisms–Caenorhabditis elegans and Drosophila melanogaster-and summarise the compelling insights of the epigenetic regulation of transgenerational inheritance that are potentially relevant to human psychiatry.展开更多
The reversible and precise temporal and spatial regulation of histone lysine methyltransferases(KMTs)is essential for epigenome homeostasis.The dysregulation of KMTs is associated with tumor initiation,metastasis,chem...The reversible and precise temporal and spatial regulation of histone lysine methyltransferases(KMTs)is essential for epigenome homeostasis.The dysregulation of KMTs is associated with tumor initiation,metastasis,chemoresistance,invasiveness,and the immune microenvironment.Therapeutically,their promising effects are being evaluated in diversified preclinical and clinical trials,demonstrating encouraging outcomes in multiple malignancies.In this review,we have updated recent understandings of KMTs'functions and the development of their targeted inhibitors.First,we provide an updated overview of the regulatory roles of several KMT activities in oncogenesis,tumor suppression,and immune regulation.In addition,we summarize the current targeting strategies in different cancer types and multiple ongoing clinical trials of combination therapies with KMT inhibitors.In summary,we endeavor to depict the regulation of KMT-mediated epigenetic landscape and provide potential epigenetic targets in the treatment of cancers.展开更多
文摘In the United States,schools offer special education services to children who are diagnosed with a learning or neurodevelopmental disorder and have difficulty meeting their learning goals.Pediatricians may play a key role in helping children access special education services.The number of children ages 6-21 in the United States receiving special education services increased 10.4%from 2006 to 2021.Children receiving special education services under the autism category increased 242%during the same period.The demand for special education services for children under the developmental delay and other health impaired categories increased by 184%and 83%respectively.Although student enrollment in American schools has remained stable since 2006,the percentage distribution of children receiving special education services nearly tripled for the autism category and quadrupled for the developmental delay category by 2021.Allowable heavy metal residues remain persistent in the American food supply due to food ingredient manufacturing processes.Numerous clinical trial data indicate heavy metal exposures and poor diet are the primary epigenetic factors responsible for the autism and attention deficit hyperactivity disorder epidemics.Dietary heavy metal exposures,especially inorganic mercury and lead may impact gene behavior across generations.In 2021,the United States Congress found heavy metal residues problematic in the American food supply but took no legislative action.Mandatory health warning labels on select foods may be the only way to reduce dietary heavy metal exposures and improve child learning across generations.
基金funded by National Natural Science Foundation of China(grant 82030071 and 82272495)Natural Science Foundation of Hunan Province(grant 2020JJ5930 and 2020JJ4874)the Science and Technology Major Project of Changsha(No.kh2103008).
文摘Cellular senescence assumes pivotal roles in various diseases through the secretion of proinflammatory factors.Despite extensive investigations into vascular senescence associated with aging and degenerative diseases,the molecular mechanisms governing microvascular endothelial cell senescence induced by traumatic stress,particularly its involvement in senescence-induced inflammation,remain insufficiently elucidated.In this study,we present a comprehensive demonstration and characterization of microvascular endothelial cell senescence induced by spinal cord injury(SCI).Lysine demethylase 6A(Kdm6a),commonly known as UTX,emerges as a crucial regulator of cell senescence in injured spinal cord microvascular endothelial cells(SCMECs).Upregulation of UTX induces senescence in SCMECs,leading to an amplified release of proinflammatory factors,specifically the senescenceassociated secretory phenotype(SASP)components,thereby modulating the inflammatory microenvironment.Conversely,the deletion of UTX in endothelial cells shields SCMECs against senescence,mitigates the release of proinflammatory SASP factors,and promotes neurological functional recovery after SCI.UTX forms an epigenetic regulatory axis by binding to calponin 1(CNN1),orchestrating trauma-induced SCMECs senescence and SASP secretion,thereby influencing neuroinflammation and neurological functional repair.Furthermore,local delivery of a senolytic drug reduces senescent SCMECs and suppresses proinflammatory SASP secretion,reinstating a local regenerative microenvironment and enhancing functional repair after SCI.In conclusion,targeting the UTX-CNN1 epigenetic axis to prevent trauma-induced SCMECs senescence holds the potential to inhibit SASP secretion,alleviate neuroinflammation,and provide a novel treatment strategy for SCI repair.
文摘Alzheimer’s disease is a progressive neurodegenerative disorder and the most common cause of dementia that principally affects older adults.Pathogenic factors,such as oxidative stress,an increase in acetylcholinesterase activity,mitochondrial dysfunction,genotoxicity,and neuroinflammation are present in this syndrome,which leads to neurodegeneration.Neurodegenerative pathologies such as Alzheimer’s disease are considered late-onset diseases caused by the complex combination of genetic,epigenetic,and environmental factors.There are two main types of Alzheimer’s disease,known as familial Alzheimer’s disease(onset<65 years)and late-onset or sporadic Alzheimer’s disease(onset≥65 years).Patients with familial Alzheimer’s disease inherit the disease due to rare mutations on the amyloid precursor protein(APP),presenilin 1 and 2(PSEN1 and PSEN2)genes in an autosomaldominantly fashion with closely 100%penetrance.In contrast,a different picture seems to emerge for sporadic Alzheimer’s disease,which exhibits numerous non-Mendelian anomalies suggesting an epigenetic component in its etiology.Importantly,the fundamental pathophysiological mechanisms driving Alzheimer’s disease are interfaced with epigenetic dysregulation.However,the dynamic nature of epigenetics seems to open up new avenues and hope in regenerative neurogenesis to improve brain repair in Alzheimer’s disease or following injury or stroke in humans.In recent years,there has been an increase in interest in using natural products for the treatment of neurodegenerative illnesses such as Alzheimer’s disease.Through epigenetic mechanisms,such as DNA methylation,non-coding RNAs,histone modification,and chromatin conformation regulation,natural compounds appear to exert neuroprotective effects.While we do not purport to cover every in this work,we do attempt to illustrate how various phytochemical compounds regulate the epigenetic effects of a few Alzheimer’s disease-related genes.
基金supported by grants from the National Natural Science Foundation of China(Grant No.82172723)the Natural Science Foundation of Sichuan(Grant Nos.2023NSFSC1828 and 2022NSFSC1289)+2 种基金the“Xinglin Scholar”Scientific Research Promotion Plan of Chengdu University of Transitional Chinese Medicine(Grant No.BSH2021003)the Innovation Team and Talents Cultivation Program of National Administration of Traditional Chinese Medicine(Grant No.ZYYCXTD-D-202209)the Research Funding of Department of Science and Technology of Qinghai Province(Grant No.2023-ZJ-729)。
文摘Objective:Epigenetic abnormalities have a critical role in breast cancer by regulating gene expression;however,the intricate interrelationships and key roles of approximately 400 epigenetic regulators in breast cancer remain elusive.It is important to decipher the comprehensive epigenetic regulatory network in breast cancer cells to identify master epigenetic regulators and potential therapeutic targets.Methods:We employed high-throughput sequencing-based high-throughput screening(HTS^(2))to effectively detect changes in the expression of 2,986 genes following the knockdown of 400 epigenetic regulators.Then,bioinformatics analysis tools were used for the resulting gene expression signatures to investigate the epigenetic regulations in breast cancer.Results:Utilizing these gene expression signatures,we classified the epigenetic regulators into five distinct clusters,each characterized by specific functions.We discovered functional similarities between BAZ2B and SETMAR,as well as CLOCK and CBX3.Moreover,we observed that CLOCK functions in a manner opposite to that of HDAC8 in downstream gene regulation.Notably,we constructed an epigenetic regulatory network based on the gene expression signatures,which revealed 8 distinct modules and identified 10 master epigenetic regulators in breast cancer.Conclusions:Our work deciphered the extensive regulation among hundreds of epigenetic regulators.The identification of 10 master epigenetic regulators offers promising therapeutic targets for breast cancer treatment.
文摘In recent years, sarcopenia, as a progressive muscular atrophy and weakness, has become one of the common diseases in the elderly. Although its cause is not fully understood, a growing body of research suggests that epigenetic mechanisms play an important role in the pathogenesis of sarcopenia. The purpose of this review is to summarize the current research progress in the epigenetics of sarcopenia, focusing on the role of DNA methylation, RNA methylation and non-coding RNA in the pathogenesis of sarcopenia. While exploring the epigenetic mechanism of sarcopenia, this study will also look into the application prospect of epigenetics in the treatment strategy of sarcopenia, which will provide new ideas and directions for the treatment of sarcopenia.
文摘Epigenetic changes are changes in gene expression by regulating gene transcription and translation without changing the nucleotide sequence of the genome. Although the genome itself changes during the occurrence and development of most malignant tumors, recent studies have found that epigenetic changes also play an important role in the occurrence and development of tumors. Epigenetic modification mainly includes DNA methylation, histone modification and miRNA regulation. This review focuses on the role and mechanism of epigenetic modification in the occurrence, metastasis and invasion of hepatocellular carcinoma (HCC), and summarizes the latest methods for the treatment of HCC by restoring dysregulated epigenetic modification. It provides a theoretical basis for revealing the pathogenesis of liver cancer and developing new methods of diagnosis and treatment.
文摘This editorial comments on the manuscript by Chang et al,focusing on the still elusive interplay between epigenetic regulation and autophagy in gastrointestinal diseases,particularly cancer.Autophagy,essential for cellular homeostasis,exhibits diverse functions ranging from cell survival to death,and is particularly implicated in physiological gastrointestinal cell functions.However,its role in pathological backgrounds remains intricate and context-dependent.Studies underscore the dual nature of autophagy in cancer,where its early suppressive effects in early stages are juxtaposed with its later promotion,contributing to chemoresistance.This discrepancy is attributed to the dysregulation of autophagy-related genes and their intricate involvement in cellular processes.Epigenetic modifications and regulations of gene expression,including non-coding RNAs(ncRNAs),emerge as critical players in exerting regulatory control over autophagy flux,influencing treatment responses and tumor progression.Targeting epigenetic mechanisms and improving strategies involving the inhibition or induction of autophagy through pharmacological or genetic means present potential avenues to sensitize tumor cells to chemotherapy.Additionally,nanocarrier-based delivery of ncRNAs offers innovative therapeutic approaches.Understanding the intricate interaction between autophagy and ncRNA regula-tion opens avenues for the development of targeted therapies,thereby improving the prognosis of gastrointestinal malignancies with poor outcomes.
基金funded in part by the National Natural Science Foundation of China(No.82371877)Advanced Talents and Science and Technology Innovation Foundation at Yangzhou University(No.137011856,HS).
文摘Ewing’s sarcoma(EWS)is a highly aggressive malignant bone tumor primarily affecting adolescents and young adults.Despite the efficacy of chemoradiotherapy in some cases,the cure rate for patients with metastatic and recurrent disease remains low.Therefore,there is an urgent need for innovative therapeutic approaches to address the challenges associated with EWS treatment.Epigenetic regulation,a crucial factor in physiological processes,plays a significant role in controlling cell proliferation,maintaining gene integrity,and regulating transcription.Recent studies highlight the importance of abnormal epigenetic regulation in the initiation and progression of EWS.A comprehensive understanding of the intricate interactions between EWS and aberrant epigenetic regulation is essential for advancing clinical drug development.This review aims to provide a comprehensive overview of both epigenetic targets implicated in EWS,integrating various therapeutic modalities to offer innovative perspectives for the clinical diagnosis and treatment of EWS.
基金supported by the National Natural Science Foundation of China(NSFC,31970564,32000397,32171982)the Fundamental Research Funds for the Central Universities(2662023PY004)。
文摘"Synthetic"allopolyploids recreated by interspecific hybridization play an important role in providing novel genomic variation for crop improvement.Such synthetic allopolyploids often undergo rapid genomic structural variation(SV).However,how such SV arises,is inherited and fixed,and how it affects important traits,has rarely been comprehensively and quantitively studied in advanced generation synthetic lines.A better understanding of these processes will aid breeders in knowing how to best utilize synthetic allopolyploids in breeding programs.Here,we analyzed three genetic mapping populations(735 DH lines)derived from crosses between advanced synthetic and conventional Brassica napus(rapeseed)lines,using whole-genome sequencing to determine genome composition.We observed high tolerance of large structural variants,particularly toward the telomeres,and preferential selection for balanced homoeologous exchanges(duplication/deletion events between the A and C genomes resulting in retention of gene/chromosome dosage between homoeologous chromosome pairs),including stable events involving whole chromosomes("pseudoeuploidy").Given the experimental design(all three populations shared a common parent),we were able to observe that parental SV was regularly inherited,showed genetic hitchhiking effects on segregation,and was one of the major factors inducing adjacent novel and larger SV.Surprisingly,novel SV occurred at low frequencies with no significant impacts on observed fertility and yield-related traits in the advanced generation synthetic lines.However,incorporating genome-wide SV in linkage mapping explained significantly more genetic variance for traits.Our results provide a framework for detecting and understanding the occurrence and inheritance of genomic SV in breeding programs,and support the use of synthetic parents as an important source of novel trait variation.
文摘Inflammatory bowel disease(IBD)is the consequence of a complex interplay between environmental factors,like dietary habits,that alter intestinal microbiota in response to luminal antigens in genetically susceptible individuals.Epigenetics represents an auspicious area for the discovery of how environmental factors influence the pathogenesis of inflammation,prognosis,and response to therapy.Consequently,it relates to gene expression control in response to environmental influences.The increasing number of patients with IBD globally is indicative of the negative effects of a food supply rich in trans and saturated fats,refined su-gars,starches and additives,as well as other environmental factors like seden-tarism and excess bodyweight,influencing the promotion of gene expression and increasing DNA hypomethylation in IBD.As many genetic variants are now associated with Crohn's disease(CD),new therapeutic strategies targeting modi-fiable environmental triggers,such as the implementation of an anti-inflammatory diet that involves the removal of potential food antigens,are of growing interest in the current literature.Diet,as a strong epigenetic factor in the pathogenesis of inflammatory disorders like IBD,provides novel insights into the pathophysio-logy of intestinal and extraintestinal inflammatory disorders.
文摘Gestational diabetes mellitus(GDM)is a pregnancy-related complication characterized by abnormal glucose metabolism in pregnant women and has an important impact on fetal development.As a bridge between the mother and the fetus,the placenta has nutrient transport functions,endocrine functions,etc.,and can regulate placental nutrient transport and fetal growth and development according to maternal metabolic status.Only by means of placental transmission can changes in maternal hyperglycemia affect the fetus.There are many reports on the placental pathophysiological changes associated with GDM,the impacts of GDM on the growth and development of offspring,and the prevalence of GDM in offspring after birth.Placental epigenetic changes in GDM are involved in the programming of fetal development and are involved in the pathogenesis of later chronic diseases.This paper summarizes the effects of changes in placental nutrient transport function and hormone secretion levels due to maternal hyperglycemia and hyperinsulinemia on the development of offspring as well as the participation of changes in placental epigenetic modifications due to maternal hyperglycemia in intrauterine fetal programming to promote a comprehensive understanding of the impacts of placental epigenetic modifications on the development of offspring from patients with GDM.
基金Supported by the following Brazilian funding agencies:Financiamento e IncentivoàPesquisa from Hospital de Clínicas de Porto Alegre(FIPE/HCPA),No.2021-0105(toÁlvares-da-Silva MR)Coordination for the Improvement of Higher Education Personnel,CAPES/PNPDand this study was financed in part by the Conselho Nacional de Desenvolvimento Científico e Tecnológico(CNPq)(toÁlvares-da-Silva MR).
文摘BACKGROUND Prevalence of hepatocellular carcinoma(HCC)is increasing,especially in patients with metabolic dysfunctionassociated steatotic liver disease(MASLD).AIM To investigate rifaximin(RIF)effects on epigenetic/autophagy markers in animals.METHODS Adult Sprague-Dawley rats were randomly assigned(n=8,each)and treated from 5-16 wk:Control[standard diet,water plus gavage with vehicle(Veh)],HCC[high-fat choline deficient diet(HFCD),diethylnitrosamine(DEN)in drinking water and Veh gavage],and RIF[HFCD,DEN and RIF(50 mg/kg/d)gavage].Gene expression of epigenetic/autophagy markers and circulating miRNAs were obtained.RESULTS All HCC and RIF animals developed metabolic-dysfunction associated steatohepatitis fibrosis,and cirrhosis,but three RIF-group did not develop HCC.Comparing animals who developed HCC with those who did not,miR-122,miR-34a,tubulin alpha-1c(Tuba-1c),metalloproteinases-2(Mmp2),and metalloproteinases-9(Mmp9)were significantly higher in the HCC-group.The opposite occurred with Becn1,coactivator associated arginine methyltransferase-1(Carm1),enhancer of zeste homolog-2(Ezh2),autophagy-related factor LC3A/B(Map1 Lc3b),and p62/sequestosome-1(p62/SQSTM1)-protein.Comparing with controls,Map1 Lc3b,Becn1 and Ezh2 were lower in HCC and RIF-groups(P<0.05).Carm1 was lower in HCC compared to RIF(P<0.05).Hepatic expression of Mmp9 was higher in HCC in relation to the control;the opposite was observed for p62/Sqstm1(P<0.05).Expression of p62/SQSTM1 protein was lower in the RIF-group compared to the control(P=0.024).There was no difference among groups for Tuba-1c,Aldolase-B,alpha-fetoprotein,and Mmp2(P>0.05).miR-122 was higher in HCC,and miR-34a in RIF compared to controls(P<0.05).miR-26b was lower in HCC compared to RIF,and the inverse was observed for miR-224(P<0.05).There was no difference among groups regarding miR-33a,miR-143,miR-155,miR-375 and miR-21(P>0.05).CONCLUSION RIF might have a possible beneficial effect on preventing/delaying liver carcinogenesis through epigenetic modulation in a rat model of MASLD-HCC.
文摘BACKGROUND Esophageal squamous cell carcinoma(ESCC)is a prevalent malignancy with a high morbidity and mortality rate.TMEM100 has been shown to be suppressor gene in a variety of tumors,but there are no reports on the role of TMEM100 in esophageal cancer(EC).AIM To investigate epigenetic regulation of TMEM100 expression in ESCC and the effect of TMEM100 on ESCC proliferation and invasion.METHODS Firstly,we found the expression of TMEM100 in EC through The Cancer Genome Atlas database.The correlation between TMEM100 gene expression and the survival of patients with EC was further confirmed through Kaplan-Meier analysis.We then added the demethylating agent 5-AZA to ESCC cell lines to explore the regulation of TMEM100 expression by epigenetic modification.To observe the effect of TMEM100 expression on tumor proliferation and invasion by overexpressing TMEM100.Finally,we performed gene set enrichment analysis using the Kyoto Encyclopaedia of Genes and Genomes Orthology-Based Annotation System database to look for pathways that might be affected by TMEM100 and verified the effect of TMEM100 expression on the mitogen-activated protein kinases(MAPK)pathway.RESULTS In the present study,by bioinformatic analysis we found that TMEM100 was lowly expressed in EC patients compared to normal subjects.Kaplan-meier survival analysis showed that low expression of TMEM100 was associated with poor prognosis in patients with EC.Then,we found that the demethylating agent 5-AZA resulted in increased expression of TMEM100 in ESCC cells[quantitative real-time PCR(qRT-PCR)and western blotting].Subsequently,we confirmed that overexpression of TMEM100 leads to its increased expression in ESCC cells(qRT-PCR and western blotting).Overexpression of TMEM100 also inhibited proliferation,invasion and migration of ESCC cells(cell counting kit-8 and clone formation assays).Next,by enrichment analysis,we found that the gene set was significantly enriched in the MAPK signaling pathway.The involvement of TMEM100 in the regulation of MAPK signaling pathway in ESCC cell was subsequently verified by western blotting.CONCLUSION TMEM100 is a suppressor gene in ESCC,and its low expression may lead to aberrant activation of the MAPK pathway.Promoter methylation may play a key role in regulating TMEM100 expression.
文摘Diabetic kidney disease(DKD)is a clinical syndrome that is one of the major causes of end-stage renal disease(ESRD).The pathogenesis of DKD is complex and multifaceted,with most studies indicating its association with genetics,advanced glycosylation end-product deposition,polyol pathway and protein C activation,lipid metabolism abnormalities,microcirculatory dysfunction,oxidative stress,inflammatory factors,and the kallikrein-kinin system.Epigenetics is the science studying gene expression regulation without changes in the DNA sequence.In recent years,increasing evidence has shown that epigenetic mechanisms play a crucial role in the initiation and progression of DKD.For instance,epigenetic modifications such as DNA methylation,histone modifications,and non-coding RNAs can influence the expression of DKD-related genes,thereby regulating the development and progression of DKD.On the other hand,metabolic memory is an important concept in DKD research.Metabolic memory refers to the phenomenon where cells maintain a certain metabolic state even after the disappearance of metabolic stress factors.This state can influence cell function and fate.In DKD,metabolic stress factors such as hyperglycemia can lead to metabolic memory in renal cells,affecting their function and fate,ultimately leading to the development and progression of DKD.Therefore,to further explore the pathogenesis of DKD,research on epigenetics should be strengthened,aiming to provide new ideas and methods for the prevention and treatment of DKD.
文摘Neuroendocrine prostate cancer(NEPC)shows an aggressive behavior compared to prostate cancer(PCa),also known as prostate adenocarcinoma.Scanty foci in PCa can harbor genetic alternation that can arise in a heterogeneity of prostate cancer.NEPC may arise de novo or develop following androgen deprivation therapy(ADT).NEPC that arise following ADT has the nomenclature“treatmentemerging/induced NEPC(t-NEPC)”.t-NEPC would be anticipated in castration resistant prostate cancer(CRPC)and metastatic PCa.t-NEPC is characterized by low or absent androgen receptor(AR)expression,independence of AR signaling,and gain of neuroendocrine phenotype.t-NEPC is an aggressive metastatic tumor,develops from PCa in response to drug induced ADT,and shows very short response to conventional therapy.t-NEPC occurs in 10%-17%of patients with CRPC.De novo NEPC is rare and is accounting for less than 2%of all PCa.The molecular mechanisms underlying the trans-differentiation from CRPC to t-NEPC are not fully elucidated.Sphingosine kinase 1 plays a significant role in t-NEPC development.Although neuroendocrine markers:Synaptophysin,chromogranin A,and insulinoma associated protein 1(INSM1)are expressed in t-NEPC,they are non-specific for diagnosis,prognosis,and follow-up of therapy.t-NEPC shows enriched genomic alteration in tumor protein P53(TP53)and retinoblastoma 1(RB1).There are evidences suggest that t-NEPC might develop through epigenetic evolution.There are genomic,epigenetic,and transcriptional alterations that are reported to be involved in development of t-NEPC.Knock-outs of TP53 and RB1 were found to contribute in development of t-NEPC.PCa is resistant to immunotherapy,and at present there are running trials to approach immunotherapy for PCa,CRPC,and t-NEPC.
文摘This study aims to further promote the inheritance and innovative development of intangible cultural heritage in Yunnan Province,promote the protection,inheritance,integration,and innovation of ethnic culture in Lijiang,strengthen the protection and inheritance of Baisha murals in Lijiang,and change the teaching of art design majors in vocational colleges in Yunnan.Given the lack of traditional Chinese culture and local ethnic culture,this article focuses on the teaching of art design majors in Yunnan vocational colleges.It explores the construction model of the cultural inheritance and innovation carrier of Lijiang Baisha murals to meet the spiritual and cultural needs of the local people,and efforts will be made to promote the high-quality development of the Baisha ethnic area in Lijiang.
文摘Inflammatory bowel disease(IBD)has as a main characteristic the exacerbation of the immune system against enterocytes,compromising the individual’s intestinal microbiota.This inflammatory cascade causes several nutritional deficiencies,which further compromise immunological functioning and,as a result,worsen the prognosis.This vicious cycle can be interrupted as the patient’s dietary pattern meets their needs according to their clinical condition,acting directly on the inflammatory process of IBD through the interaction of food,intestinal microbiota,and epigenome.Specific nutritional intervention for IBD has a crucial role in preventing and managing disease activity.This review addresses epigenetic modifications through dietary compounds as a mechanism for modulating the intestinal microbiota of patients with IBD.
基金supported by the National Natural Science Foundation of China (Grant Nos. 32160142, 81873095)。
文摘Flower development is one of the most vital pathways in plant development, during which the epigenetic regulation of gene expression is essential. DNA methylation, the most conserved epigenetic modification, participates in gene expression regulation and transposable element silencing. Honeysuckle(Lonicera japonica) is an important medicinal plant renowned for its colorful and fragrant flowers. Honeysuckle flowers change color from white to gold as a result of carotenoid accumulation during development. However, the role of DNA methylation in flower color changes is not well understood in L. japonica. Here, we performed whole-genome bisulfite sequencing and transcriptome sequencing during flowering development in honeysuckle. The results showed that a decrease in the levels of genome-wide average DNA methylation during flower development and changes in DNA methylation were associated with the expression of demethylase genes. Moreover, many genes involved in carotenoid biosynthesis and degradation, such as Lj PSY1, LjPDS1, LjLCYE, and LjCCD4, have altered expression levels because of hypomethylation, indicating that DNA methylation plays an important role in flower color changes in honeysuckle. Taken together, our data provide epigenetic insights into flower development and color change in honeysuckles.
文摘Mental illness remains the greatest chronic health burden globally with few inroads having been made despite significant advances in genomic knowledge in recent decades.The field of psychiatry is constantly challenged to bring new approaches and tools to address and treat the needs of vulnerable individuals and subpopulations,and that has to be supported by a continuous growth in knowledge.The majority of neuropsychiatric symptoms reflect complex geneenvironment interactions,with epigenetics bridging the gap between genetic susceptibility and environmental stressors that trigger disease onset and drive the advancement of symptoms.It has more recently been demonstrated in preclinical models that epigenetics underpins the transgenerational inheritance of stressrelated behavioural phenotypes in both paternal and maternal lineages,providing further supporting evidence for heritability in humans.However,unbiased prospective studies of this nature are practically impossible to conduct in humans so preclinical models remain our best option for researching the molecular pathophysiologies underlying many neuropsychiatric conditions.While rodents will remain the dominant model system for preclinical studies(especially for addressing complex behavioural phenotypes),there is scope to expand current research of the molecular and epigenetic pathologies by using invertebrate models.Here,we will discuss the utility and advantages of two alternative model organisms–Caenorhabditis elegans and Drosophila melanogaster-and summarise the compelling insights of the epigenetic regulation of transgenerational inheritance that are potentially relevant to human psychiatry.
基金the Science and Technology Commission of Shanghai,China(Grant Nos.:20DZ2270800 and 19JC1410200)Innovative Research Team of High-Level Local Universities in Shanghai,China(Grant No.:SHSMU-ZDCX20210900)the National Natural Science Foundation of China(Grant No.:82073889).
文摘The reversible and precise temporal and spatial regulation of histone lysine methyltransferases(KMTs)is essential for epigenome homeostasis.The dysregulation of KMTs is associated with tumor initiation,metastasis,chemoresistance,invasiveness,and the immune microenvironment.Therapeutically,their promising effects are being evaluated in diversified preclinical and clinical trials,demonstrating encouraging outcomes in multiple malignancies.In this review,we have updated recent understandings of KMTs'functions and the development of their targeted inhibitors.First,we provide an updated overview of the regulatory roles of several KMT activities in oncogenesis,tumor suppression,and immune regulation.In addition,we summarize the current targeting strategies in different cancer types and multiple ongoing clinical trials of combination therapies with KMT inhibitors.In summary,we endeavor to depict the regulation of KMT-mediated epigenetic landscape and provide potential epigenetic targets in the treatment of cancers.