Al-doped ZnO(AZO) thin films were grown on c-sapphire substrates by laser ablation under different oxygen partial pressures(P_(O2)).The effect of P_(O2) on the crystal structure,preferred orientation as well a...Al-doped ZnO(AZO) thin films were grown on c-sapphire substrates by laser ablation under different oxygen partial pressures(P_(O2)).The effect of P_(O2) on the crystal structure,preferred orientation as well as the electrical and optical properties of the films was investigated.The structure characterizations indicated that the as-grown films were single-phased with a wurtzite ZnO structure,showing a significant c-axis orientation.The films were well crystallized and exhibited better crystallinity and denser texture when deposited at higher P_(O2).At the optimum oxygen partial pressures of 10- 15 Pa,the AZO thin films were epitaxially grown on c-sapphire substrates with the(0001) plane parallel to the substrate surface,i e,the epitaxial relationship was AZO(000 1) // A1_2O_3(000 1).With increasing P_(O2),the value of Hall carrier mobility was increased remarkably while that of carrier concentration was decreased slightly,which led to an enhancement in electrical conductivity of the AZO thin films.All the films were highly transparent with an optical transmittance higher than 85%.展开更多
We report the successful growth of the tetragonal FeS film with one or two unit-cell (UC) thickness on SrTiO33(001) substrates by molecular beam epitaxy. Large lattice constant mismatch with the substrate leads to...We report the successful growth of the tetragonal FeS film with one or two unit-cell (UC) thickness on SrTiO33(001) substrates by molecular beam epitaxy. Large lattice constant mismatch with the substrate leads to high density of defects in single-UC FeS, while it has been significantly reduced in the double-UC thick film due to the lattice relaxation. The scanning tunneling spectra on the surface of the FeS thin film reveal the electronic doping effect of single-UC FeS from the substrate. In addition, at the Fermi level, the energy gaps of approximately 1.5?meV are observed in the films of both thicknesses at 4.6?K and below. The absence of coherence peaks of gap spectra may be related to the preformed Cooper-pairs without phase coherence.展开更多
We perform molecular beam epitaxy growth and scanning tunneling microscopy study of copper diselenide (CuSe2 ) films on SrTiO3 (001). Using a Se-rich condition, the single-phase pyrite CuSe2 grows in the Stranski-...We perform molecular beam epitaxy growth and scanning tunneling microscopy study of copper diselenide (CuSe2 ) films on SrTiO3 (001). Using a Se-rich condition, the single-phase pyrite CuSe2 grows in the Stranski-Krastanov (layer-plus-island) mode with a preferential orientation of (111). Our careful inspection of both the as-grown and post-annealed CuSe2 films at various temperatures invariably shows a Cu-terminated surface, which, depending on the annealing temperature, reconstructs into two distinct structures 2 ×√3 and √x ×√3-R30°. The Cu termi- nation is supported by the depressed density of states near the Fermi level, measured by in-situ low temperature scanning tunneling spectroscopy. Our study helps understand the preparation and surface chemistry of transition metal pyrite dichalcogenides thin films.展开更多
Aberration-corrected scanning transmission electron microscopy was employed to investigate the microstructures and secondary phases in LaBaCo2O5.5+δ(LBCO) thin films grown on SrTiO3 (STO) substrates. The as-grow...Aberration-corrected scanning transmission electron microscopy was employed to investigate the microstructures and secondary phases in LaBaCo2O5.5+δ(LBCO) thin films grown on SrTiO3 (STO) substrates. The as-grown films showed an epitaxial growth on the substrates with atomically sharp interfaces and orientation relationships of [100]LBCO//[100]STO and (001)LBCO//(001)STO. Secondary phases were observed in the films, which strongly depended on the sample fabrication conditions. In the film prepared at a temperature of 900 ℃, nano-scale CoO pillars nucleated on the substrate, and grew along the [001] direction of the film. In the film grown at a temperature of 1000 ℃, isolated nano-scale C0304 particles appeared, which promoted the growth of {111 } twinning structures in the film. The orientation relationships and the interfaces between the secondary phases and the films were illustrated, and the growth mechanism of the film was discussed.展开更多
High quality epitaxial single phase(Ga_(0.96)Mn_(0.04))_2O_3 and Ga_2O_3 thin films have been prepared on sapphire substrates by using laser molecular b(eam)epitaxy(L-MBE). X-ray diffraction results indicate...High quality epitaxial single phase(Ga_(0.96)Mn_(0.04))_2O_3 and Ga_2O_3 thin films have been prepared on sapphire substrates by using laser molecular b(eam)epitaxy(L-MBE). X-ray diffraction results indicate that the thin films have the monoclinic structure with a 201 preferable orientation. Room temperature(RT) ferromagnetism appears and the magnetic properties of β-(Ga_(0.96)Mn_(0.04))_2O_3 thin film are enhanced compared with our previous works. Experiments as well as the first principle method are used to explain the role of Mn dopant on the structure and magnetic properties of the thin films. The ferromagnetic properties are explained based on the concentration of transition element and the defects in the thin films.展开更多
基金Funded by National Natural Science Foundation of China(Nos.51272195,51521001)111 project(No.B13035)+1 种基金Hubei Provincial National Natural Science Foundation(No.2015CFB724)Fundamental Research Funds for the Central Universities(Nos.2013-ZD-4,2014-KF-3)
文摘Al-doped ZnO(AZO) thin films were grown on c-sapphire substrates by laser ablation under different oxygen partial pressures(P_(O2)).The effect of P_(O2) on the crystal structure,preferred orientation as well as the electrical and optical properties of the films was investigated.The structure characterizations indicated that the as-grown films were single-phased with a wurtzite ZnO structure,showing a significant c-axis orientation.The films were well crystallized and exhibited better crystallinity and denser texture when deposited at higher P_(O2).At the optimum oxygen partial pressures of 10- 15 Pa,the AZO thin films were epitaxially grown on c-sapphire substrates with the(0001) plane parallel to the substrate surface,i e,the epitaxial relationship was AZO(000 1) // A1_2O_3(000 1).With increasing P_(O2),the value of Hall carrier mobility was increased remarkably while that of carrier concentration was decreased slightly,which led to an enhancement in electrical conductivity of the AZO thin films.All the films were highly transparent with an optical transmittance higher than 85%.
基金Supported by the National Natural Science Foundation of Chinathe Ministry of Science and Technology of Chinathe Specialized Research Fund for the Doctoral Program of Higher Education under Grant No 20130002120033
文摘We report the successful growth of the tetragonal FeS film with one or two unit-cell (UC) thickness on SrTiO33(001) substrates by molecular beam epitaxy. Large lattice constant mismatch with the substrate leads to high density of defects in single-UC FeS, while it has been significantly reduced in the double-UC thick film due to the lattice relaxation. The scanning tunneling spectra on the surface of the FeS thin film reveal the electronic doping effect of single-UC FeS from the substrate. In addition, at the Fermi level, the energy gaps of approximately 1.5?meV are observed in the films of both thicknesses at 4.6?K and below. The absence of coherence peaks of gap spectra may be related to the preformed Cooper-pairs without phase coherence.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11374336 and 61176078
文摘We perform molecular beam epitaxy growth and scanning tunneling microscopy study of copper diselenide (CuSe2 ) films on SrTiO3 (001). Using a Se-rich condition, the single-phase pyrite CuSe2 grows in the Stranski-Krastanov (layer-plus-island) mode with a preferential orientation of (111). Our careful inspection of both the as-grown and post-annealed CuSe2 films at various temperatures invariably shows a Cu-terminated surface, which, depending on the annealing temperature, reconstructs into two distinct structures 2 ×√3 and √x ×√3-R30°. The Cu termi- nation is supported by the depressed density of states near the Fermi level, measured by in-situ low temperature scanning tunneling spectroscopy. Our study helps understand the preparation and surface chemistry of transition metal pyrite dichalcogenides thin films.
基金financially supported by the National Natural Science Foundation of China (Nos. 51501143, 51202185 and 51390472)the National Basic Research Program of China (No. 2015CB654903)Fundamental Research Funds for the Central Universities, China Postdoctoral Science Foundation (No. 2015M572554)
文摘Aberration-corrected scanning transmission electron microscopy was employed to investigate the microstructures and secondary phases in LaBaCo2O5.5+δ(LBCO) thin films grown on SrTiO3 (STO) substrates. The as-grown films showed an epitaxial growth on the substrates with atomically sharp interfaces and orientation relationships of [100]LBCO//[100]STO and (001)LBCO//(001)STO. Secondary phases were observed in the films, which strongly depended on the sample fabrication conditions. In the film prepared at a temperature of 900 ℃, nano-scale CoO pillars nucleated on the substrate, and grew along the [001] direction of the film. In the film grown at a temperature of 1000 ℃, isolated nano-scale C0304 particles appeared, which promoted the growth of {111 } twinning structures in the film. The orientation relationships and the interfaces between the secondary phases and the films were illustrated, and the growth mechanism of the film was discussed.
基金Project supported by the National Natural Science Foundation of China(Nos.11404029,51572033,51172208)the Fund of State Key Laboratory of Information Photonics and Optical Communications(BUPT)
文摘High quality epitaxial single phase(Ga_(0.96)Mn_(0.04))_2O_3 and Ga_2O_3 thin films have been prepared on sapphire substrates by using laser molecular b(eam)epitaxy(L-MBE). X-ray diffraction results indicate that the thin films have the monoclinic structure with a 201 preferable orientation. Room temperature(RT) ferromagnetism appears and the magnetic properties of β-(Ga_(0.96)Mn_(0.04))_2O_3 thin film are enhanced compared with our previous works. Experiments as well as the first principle method are used to explain the role of Mn dopant on the structure and magnetic properties of the thin films. The ferromagnetic properties are explained based on the concentration of transition element and the defects in the thin films.