High-electron-mobility transistors(HEMTs)are a promising device in the field of radio frequency and wireless communication.However,to unlock the full potential of HEMTs,the fabrication of large-size flexible HEMTs is ...High-electron-mobility transistors(HEMTs)are a promising device in the field of radio frequency and wireless communication.However,to unlock the full potential of HEMTs,the fabrication of large-size flexible HEMTs is required.Herein,a large-sized(>2 cm^(2))of AlGaN/AlN/GaN heterostructure-based HEMTs were successfully stripped from sapphire substrate to a flexible polyethylene terephthalate substrate by an electrochemical lift-off technique.The piezotronic effect was then induced to optimize the electron transport performance by modulating/tuning the physical properties of two-dimensional electron gas(2DEG)and phonons.The saturation current of the flexible HEMT is enhanced by 3.15%under the 0.547%tensile condition,and the thermal degradation of the HEMT was also obviously suppressed under compressive straining.The corresponding electrical performance changes and energy diagrams systematically illustrate the intrinsic mechanism.This work not only provides in-depth understanding of the piezotronic effect in tuning 2DEG and phonon properties in GaN HEMTs,but also demonstrates a low-cost method to optimize its electronic and thermal properties.展开更多
Two-dimensional materials have been widely used to tune the growth and energy-level alignment of perovskites.However,their incomplete passivation and chaotic usage amounts are not conducive to the preparation of highq...Two-dimensional materials have been widely used to tune the growth and energy-level alignment of perovskites.However,their incomplete passivation and chaotic usage amounts are not conducive to the preparation of highquality perovskite films.Herein,we succeeded in obtaining higher-quality CsPbBr_(3)films by introducing large-area monolayer graphene as a stable physical overlay on top of TiO_(2)substrates.Benefiting from the inert and atomic smooth graphene surface,the CsPbBr_(3)film grown on top by the van der Waal epitaxy has higher crystallinity,improved(100)orientation,and an average domain size of up to 1.22μm.Meanwhile,a strong downward band bending is observed at the graphene/perovskite interface,improving the electron extraction to the electron transport layers(ETL).As a result,perovskite film grown on graphene has lower photoluminescence(PL)intensity,shorter carrier lifetime,and fewer defects.Finally,a photovoltaic device based on epitaxy CsPbBr_(3)film is fabricated,exhibiting power conversion efficiency(PCE)of up to 10.64%and stability over 2000 h in the air.展开更多
In recent years,there has been a significant increase in research focused on the growth of large-area single crystals.Rajan et al.[1]recently achieved the growth of large-area monolayers of transition-metal chalcogeni...In recent years,there has been a significant increase in research focused on the growth of large-area single crystals.Rajan et al.[1]recently achieved the growth of large-area monolayers of transition-metal chalcogenides through assisted nucleation.The quality of molecular beam epitaxy(MBE)-grown two-dimensional(2D)materials can be greatly enhanced by using sacrificial species deposited simultaneously from an electron beam evaporator during the growth process.This technique notably boosts the nucleation rate of the target epitaxial layer,resulting in large,homogeneous monolayers with improved quasiparticle lifetimes and fostering the development of epitaxial van der Waals heterostructures.Additionally,micrometer-sized silver films have been formed at the air-water interface by directly depositing electrospray-generated silver ions onto an aqueous dispersion of reduced graphene oxide under ambient conditions[2].展开更多
We introduce a novel method to create mid-infrared(MIR)thermal emitters using fully epitaxial,metal-free structures.Through the strategic use of epsilon-near-zero(ENZ)thin films in InAs layers,we achieve a narrow-band...We introduce a novel method to create mid-infrared(MIR)thermal emitters using fully epitaxial,metal-free structures.Through the strategic use of epsilon-near-zero(ENZ)thin films in InAs layers,we achieve a narrow-band,wide-angle,and p-polarized thermal emission spectra.This approach,employing molecular beam epitaxy,circumvents the complexities associated with current layered structures and yields temperature-resistant emission wavelengths.Our findings contribute a promising route towards simpler,more efficient MIR optoelectronic devices.展开更多
The emergence of Li–Mg hybrid batteries has been receiving attention,owing to their enhanced electrochemical kinetics and reduced overpotential.Nevertheless,the persistent challenge of uneven Mg electrodeposition rem...The emergence of Li–Mg hybrid batteries has been receiving attention,owing to their enhanced electrochemical kinetics and reduced overpotential.Nevertheless,the persistent challenge of uneven Mg electrodeposition remains a significant impediment to their practical integration.Herein,we developed an ingenious approach that centered around epitaxial electrocrystallization and meticulously controlled growth of magnesium crystals on a specialized MgMOF substrate.The chosen MgMOF substrate demonstrated a robust affinity for magnesium and showed minimal lattice misfit with Mg,establishing the crucial prerequisites for successful heteroepitaxial electrocrystallization.Moreover,the incorporation of periodic electric fields and successive nanochannels within the MgMOF structure created a spatially confined environment that considerably promoted uniform magnesium nucleation at the molecular scale.Taking inspiration from the“blockchain”concept prevalent in the realm of big data,we seamlessly integrated a conductive polypyrrole framework,acting as a connecting“chain,”to interlink the“blocks”comprising the MgMOF cavities.This innovative design significantly amplified charge‐transfer efficiency,thereby increasing overall electrochemical kinetics.The resulting architecture(MgMOF@PPy@CC)served as an exceptional host for heteroepitaxial Mg electrodeposition,showcasing remarkable electrostripping/plating kinetics and excellent cycling performance.Surprisingly,a symmetrical cell incorporating the MgMOF@PPy@CC electrode demonstrated impressive stability even under ultrahigh current density conditions(10mAcm^(–2)),maintaining operation for an extended 1200 h,surpassing previously reported benchmarks.Significantly,on coupling the MgMOF@PPy@CC anode with a Mo_(6)S_(8) cathode,the assembled battery showed an extended lifespan of 10,000 cycles at 70 C,with an outstanding capacity retention of 96.23%.This study provides a fresh perspective on the rational design of epitaxial electrocrystallization driven by metal–organic framework(MOF)substrates,paving the way toward the advancement of cuttingedge batteries.展开更多
With the device feature's size miniaturization in very large scale integrated circuit and ultralarge scale integrated circuit towards the sub\|micron and beyond level, the next generation of IC device requires s...With the device feature's size miniaturization in very large scale integrated circuit and ultralarge scale integrated circuit towards the sub\|micron and beyond level, the next generation of IC device requires silicon wafers with more improved electrical characteristics and reliability as well as a high perfection of the wafer surface. Compared with the polished wafer with a relatively high density of crystal originated defects (e. g. COPs), silicon epi\|wafers can meet such high requirements. The current development of researches on the 150mm silicon epi\|wafers for advanced IC applications is described. The P/P\++ CMOS silicon epi\|wafers were fabricated on a PE2061 Epitaxial Reactor (made by Italian LPE Company). The material parameters of epi\|wafers, such as epi\|defects, uniformity of thickness and resistivity, transition width, and minority carrier generation lifetime for epi\|layer were characterized in detail. It is demonstrated that the 150mm silicon epi\|wafers on PE2061 can meet the stringent requirements for the advanced IC applications.展开更多
A high voltage BCD process using thin epitaxial technology is developed for high voltage applications. Compared to conventional thick expitaxial technology, the thickness of the n-type epitaxial layer is reduced to 9...A high voltage BCD process using thin epitaxial technology is developed for high voltage applications. Compared to conventional thick expitaxial technology, the thickness of the n-type epitaxial layer is reduced to 9μm,and the diffusion processing time needed for forming junction isolation diffusions is substantially reduced. The isolation diffusions have a smaller lateral extent and occupy less chip area. High voltage double RESURF LD- MOS with a breakdown voltage of up to 900V,as well as low voltage CMOS and BJT,are achieved using this high voltage BCD compatible process. An experimental high voltage half bridge gate drive IC using a coupled level shift structure is also successfully implemented, and the high side floating offset voltage in the half bridge drive IC is 880V. The major features of this process for high voltage applications are also clearly demonstrated.展开更多
High quality GaN is grown on GaN substrate with stripe pattern by metalorganic chemical vapor deposition by means of epitaxial lateral overgrowth. AFM,wet chemical etching, and TEM experiments show that with a two-ste...High quality GaN is grown on GaN substrate with stripe pattern by metalorganic chemical vapor deposition by means of epitaxial lateral overgrowth. AFM,wet chemical etching, and TEM experiments show that with a two-step ELOG procedure, the propagation of defects under the mask is blocked, and the coherently grown GaN above the window also experiences a drastic reduction in defect density. In addition, a grain boundary is formed at the coalescence boundary of neighboring growth fronts. The extremely low density of threading dislocations within wing regions makes ELOG GaN a potential template for the fabrication of nitride-based lasers with improved performance.展开更多
A double layered porous silicon with different porosity is formed on a heavy doped p type Si(111) substrate by changing current density during the anodizing.Then a high quality epitaxial mono crystalline silicon fil...A double layered porous silicon with different porosity is formed on a heavy doped p type Si(111) substrate by changing current density during the anodizing.Then a high quality epitaxial mono crystalline silicon film is grown on the porous silicon using an ultra high vacuum electron beam evaporator.This wafer is bonded with other silicon wafer with a thermal oxide layer at room temperature.The bonded pairs are split along the porous silicon layer during subsequent thermal annealing.Thus the epitaxial Si film is transferred to the oxidized wafer to form a silicon on insulator structure.SEM,XTEM,spreading resistance probe and Hall measurement show that the SOI structure has good structural and electrical quality.展开更多
Based on a new semi empirical analytical method, namely equivalent doping transformation, the breakdown voltage and the peak field of the epitaxial diffused punch through junction have been obtained. The basic prin...Based on a new semi empirical analytical method, namely equivalent doping transformation, the breakdown voltage and the peak field of the epitaxial diffused punch through junction have been obtained. The basic principle of this method is introduced and a set of breakdown voltage and peak field plots are provided for the optimum design of the low voltage power devices. It shows that the analytical results coincide with the previous numerical simulation well.展开更多
In the past few decades,numerous high-performance silicon(Si)photonic devices have been demonstrated.Si,as a photonic platform,has received renewed interest in recent years.Efficient Si-basedⅢ–Ⅴquantum-dot(QDs)lase...In the past few decades,numerous high-performance silicon(Si)photonic devices have been demonstrated.Si,as a photonic platform,has received renewed interest in recent years.Efficient Si-basedⅢ–Ⅴquantum-dot(QDs)lasers have long been a goal for semiconductor scientists because of the incomparable optical properties of Ⅲ–Ⅴcompounds.Although the material dissimilarity betweenⅢ–Ⅴmaterial and Si hindered the development of monolithic integrations for over 30 years,considerable breakthroughs happened in the 2000s.In this paper,we review recent progress in the epitaxial growth of various Ⅲ–ⅤQD lasers on both offcut Si substrate and on-axis Si(001)substrate.In addition,the fundamental challenges in monolithic growth will be explained together with the superior characteristics of QDs.展开更多
The 8 μm thick single-crystalline α-Ga2O3 epilayers have been heteroepitaxially grown on sapphire(0001) substrates via mist chemical vapor deposition technique. High resolution X-ray diffraction measurements show th...The 8 μm thick single-crystalline α-Ga2O3 epilayers have been heteroepitaxially grown on sapphire(0001) substrates via mist chemical vapor deposition technique. High resolution X-ray diffraction measurements show that the full-widths-at-halfmaximum(FWHM) of rocking curves for the(0006) and(10-14) planes are 0.024° and 0.24°, and the corresponding densities of screw and edge dislocations are 2.24 × 106 and 1.63 × 109 cm-2, respectively, indicative of high single crystallinity. The out-ofplane and in-plane epitaxial relationships are [0001] α-Ga2O3//[0001] α-Al2O3 and [11-20] α-Ga2O3//[11-20] α-Al2O3, respectively.The lateral domain size is in micron scale and the indirect bandgap is determined as 5.03 eV by transmittance spectra. Raman measurement indicates that the lattice-mismatch induced compressive residual strain cannot be ruled out despite the large thickness of the α-Ga2O3 epilayer. The achieved high quality α-Ga2O3 may provide an alternative material platform for developing high performance power devices and solar-blind photodetectors.展开更多
An 8 mm-high NiCoCrAlYTa coating was epitaxially built-up on a directionally solidified (DS) Ni-based superalloy blade tip by electro-spark deposition.Epitaxial morphologies of the coating and its microstructural char...An 8 mm-high NiCoCrAlYTa coating was epitaxially built-up on a directionally solidified (DS) Ni-based superalloy blade tip by electro-spark deposition.Epitaxial morphologies of the coating and its microstructural characteristics were investigated by means of SEM,XRD and TEM etc.It is observed that the fine column-like dendrites originated from the γ'-particles or γ'-clusters of the DS substrate and are un-continuously coarsened.The β-phase particles precipitate and grow eutectically with the γ-phase.The orientation of fine column dendrites depends on electro-spark deposition processing parameters and the microstructure can be characterized with superfine γ and β phases.展开更多
Epitaxial films of Yttria Stabilized Zirconia(YSZ) were successfully grown on Si substrates by RF magnetron sputter, the atomic structure and the lattice mismatch of YSZ/Si were presented. Auger electron spectros...Epitaxial films of Yttria Stabilized Zirconia(YSZ) were successfully grown on Si substrates by RF magnetron sputter, the atomic structure and the lattice mismatch of YSZ/Si were presented. Auger electron spectroscopy, X ray diffraction and scanning展开更多
A self-powered graphene-based photodetector with high performance is particularly useful for device miniaturization and to save energy.Here,we report a graphene/silicon carbide(SiC)-based self-powered ultraviolet ph...A self-powered graphene-based photodetector with high performance is particularly useful for device miniaturization and to save energy.Here,we report a graphene/silicon carbide(SiC)-based self-powered ultraviolet photodetector that exhibits a current responsivity of 7.4 m A/W with a response frequency of over a megahertz under 325-nm laser irradiation.The built-in photovoltage of the photodetector is about four orders of magnitude higher than previously reported results for similar devices.These favorable properties are ascribed to the ingenious device design using the combined advantages of graphene and SiC,two terminal electrodes,and asymmetric light irradiation on one of the electrodes.Importantly,the photon energy is larger than the band gap of SiC.This self-powered photodetector is compatible with modern semiconductor technology and shows potential for applications in ultraviolet imaging and graphene-based integrated circuits.展开更多
Multiferroic NiFe2O4 (NFO)-BaTiO3 (BTO) bilayered thin films are epitaxially grown on (001) Nb-doped SrTiO3 (STO) substrates by pulsed-laser deposition (PLD). Different growth sequences of NFO and BTO on the...Multiferroic NiFe2O4 (NFO)-BaTiO3 (BTO) bilayered thin films are epitaxially grown on (001) Nb-doped SrTiO3 (STO) substrates by pulsed-laser deposition (PLD). Different growth sequences of NFO and BTO on the substrate yield two kinds of epitaxial heterostructures with (001)-orientation, i.e. (001)-NFO/(001)-BTO/substrate and (001)- BTO/(001)-NFO/substrate. Microstructure studies from x-ray diffraction (XRD) and electron microscopies show differences between these two heterostructures, which result in different multiferroic behaviours. The heterostructured composite films exhibit good coexistence of both ferroelectric and ferromagnetic properties, in particular, obvious magnetoelectric (ME) effect on coupling response.展开更多
We produced epitaxial graphene under a moderate pressure of 4 mbar (about 400 Pa) at temperature 1600 ℃. Raman spectroscopy and optical microscopy were used to confirm that epitaxial graphene has taken shape contin...We produced epitaxial graphene under a moderate pressure of 4 mbar (about 400 Pa) at temperature 1600 ℃. Raman spectroscopy and optical microscopy were used to confirm that epitaxial graphene has taken shape continually with slight thickness variations and regularly with a centimeter order of magnitude on 4H-SiC (0001) substrates. Then using X-ray photoelectron spectroscopy and Auger electron spectroscopy, we analyzed the chemical compositions and estimated the layer number of epitaxial graphene. Finally, an atomic force microscope and a scanning force microscope were used to characterize the morphological structure. Our results showed that under 4-mbar pressure, epitaxial graphene could be produced on a SiC substrate with a large area, uniform thickness but a limited morphological property. We hope our work will be of benefit to understanding the formation process of epitaxial graphene on SiC substrate in detail.展开更多
Under certain growth conditions for systems with a film/substrate lattice misfit, the deposited material is known to aggregate into island-like shapes. We have obtained an analytical expression of the total free energ...Under certain growth conditions for systems with a film/substrate lattice misfit, the deposited material is known to aggregate into island-like shapes. We have obtained an analytical expression of the total free energy, which consists of strain energy, surface energy and interfacial energy of a coherent island/substrate system, and the change of equilibrium aspect ratio versus the volume of the island and the misfit of lattices in the system, which provides a broad perspective on island behaviour. These then were used to study the equilibrium shapes of the system. The results show that in order to minimize the total free energy, a coherent island will have a particular height-to-width aspect ratio, called equilibrium aspect ratio, that is a function of the island volume and misfit. The aspect ratio is increased with increasing island volume at a fixed misfit, and with increasing misfit strain between the island and substrate at a fixed island volume. Moreover, the effect of misfit dislocation on the equilibrium shape of the island is also examined. The results obtained are in good agreement with experiment of observations and thus can serve as a basis for interpreting the experiments.展开更多
The epitaxial heterostructure can be rationally designed based on the in situ growth of two compatible phases with lattice similarity,in which the modulated electronic states and tuned adsorption behaviors are conduci...The epitaxial heterostructure can be rationally designed based on the in situ growth of two compatible phases with lattice similarity,in which the modulated electronic states and tuned adsorption behaviors are conducive to the enhancement of electrocatalytic activity.Herein,theoretical simulations first disclose the charge transfer trend and reinforced inherent electron conduction around the epitaxial heterointerface between Ru clusters and Ni_(3)N substrate(cRu-Ni_(3)N),thus leading to the optimized adsorption behaviors and reduced activation energy barriers.Subsequently,the defectrich nanosheets with the epitaxially grown cRu-Ni_(3)N heterointerface are successfully constructed.Impressively,by virtue of the superiority of intrinsic activity and reaction kinetics,such unique epitaxial heterostructure exhibits remarkable bifunctional catalytic activity toward electrocatalytic OER(226 mV@20 mA cm^(−2))and HER(32 mV@10 mA cm^(−2))in alkaline media.Furthermore,it also shows great application prospect in alkaline freshwater and seawater splitting,as well as solar-to-hydrogen integrated system.This work could provide beneficial enlightenment for the establishment of advanced electrocatalysts with epitaxial heterointerfaces.展开更多
Complex oxide heterointerfaces can host a rich of emergent phenomena,and epitaxial growth is usually at the heart of forming these interfaces.Recently,a strong crystalline-orientation-dependent two-dimensional superco...Complex oxide heterointerfaces can host a rich of emergent phenomena,and epitaxial growth is usually at the heart of forming these interfaces.Recently,a strong crystalline-orientation-dependent two-dimensional superconductivity was discovered at interfaces between KTaO_(3)single-crystal substrates and films of other oxides.Unexpectedly,rare of these oxide films was epitaxially grown.Here,we report the existence of superconductivity in epitaxially grown LaVO_(3)/KTaO_(3)(111)heterostructures,with a superconducting transition temperature of~0.5 K.Meanwhile,no superconductivity was detected in the(001)-and(110)-orientated LaVO_(3)/KTaO_(3)heterostructures down to 50 mK.Moreover,we find that for the LaVO_(3)/KTaO_(3)(111)interfaces to be conducting,an oxygen-deficient growth environment and a minimum LaVO_(3)thickness of~0.8 nm(~2 unit cells)are needed.展开更多
基金Key-Area Research and Development Program of Guangdong Province(Nos.2020B010172001,2020B010174004)GDAS’Project of Science and Technology Development(No.2018GDASCX-0112)+3 种基金Science and Technology Program of Guangzhou(No.2019050001)National Key Research and Development Program of China(No.2017YFB0404100)National Natural Science Foundation of China(Grant No.11804103)Guangdong Natural Science Foundation for Distinguished Young Scholars(Grant No.2018B030306048).
文摘High-electron-mobility transistors(HEMTs)are a promising device in the field of radio frequency and wireless communication.However,to unlock the full potential of HEMTs,the fabrication of large-size flexible HEMTs is required.Herein,a large-sized(>2 cm^(2))of AlGaN/AlN/GaN heterostructure-based HEMTs were successfully stripped from sapphire substrate to a flexible polyethylene terephthalate substrate by an electrochemical lift-off technique.The piezotronic effect was then induced to optimize the electron transport performance by modulating/tuning the physical properties of two-dimensional electron gas(2DEG)and phonons.The saturation current of the flexible HEMT is enhanced by 3.15%under the 0.547%tensile condition,and the thermal degradation of the HEMT was also obviously suppressed under compressive straining.The corresponding electrical performance changes and energy diagrams systematically illustrate the intrinsic mechanism.This work not only provides in-depth understanding of the piezotronic effect in tuning 2DEG and phonon properties in GaN HEMTs,but also demonstrates a low-cost method to optimize its electronic and thermal properties.
基金funded by the UM’s research funds(MYRG2020-00283-IAPME,MYRG2022-00266-IAPME,and MYRG-GRG2023-00224-IAPME-UMDF)the Science and Technology Development Fund,Macao SAR(FDCT 0006/2021/AKP,FDCT 0096/2020/A2,0013/2021/AMJ,and 0082/2022/A2)City University of Hong Kong(Project No.9020002)
文摘Two-dimensional materials have been widely used to tune the growth and energy-level alignment of perovskites.However,their incomplete passivation and chaotic usage amounts are not conducive to the preparation of highquality perovskite films.Herein,we succeeded in obtaining higher-quality CsPbBr_(3)films by introducing large-area monolayer graphene as a stable physical overlay on top of TiO_(2)substrates.Benefiting from the inert and atomic smooth graphene surface,the CsPbBr_(3)film grown on top by the van der Waal epitaxy has higher crystallinity,improved(100)orientation,and an average domain size of up to 1.22μm.Meanwhile,a strong downward band bending is observed at the graphene/perovskite interface,improving the electron extraction to the electron transport layers(ETL).As a result,perovskite film grown on graphene has lower photoluminescence(PL)intensity,shorter carrier lifetime,and fewer defects.Finally,a photovoltaic device based on epitaxy CsPbBr_(3)film is fabricated,exhibiting power conversion efficiency(PCE)of up to 10.64%and stability over 2000 h in the air.
文摘In recent years,there has been a significant increase in research focused on the growth of large-area single crystals.Rajan et al.[1]recently achieved the growth of large-area monolayers of transition-metal chalcogenides through assisted nucleation.The quality of molecular beam epitaxy(MBE)-grown two-dimensional(2D)materials can be greatly enhanced by using sacrificial species deposited simultaneously from an electron beam evaporator during the growth process.This technique notably boosts the nucleation rate of the target epitaxial layer,resulting in large,homogeneous monolayers with improved quasiparticle lifetimes and fostering the development of epitaxial van der Waals heterostructures.Additionally,micrometer-sized silver films have been formed at the air-water interface by directly depositing electrospray-generated silver ions onto an aqueous dispersion of reduced graphene oxide under ambient conditions[2].
文摘We introduce a novel method to create mid-infrared(MIR)thermal emitters using fully epitaxial,metal-free structures.Through the strategic use of epsilon-near-zero(ENZ)thin films in InAs layers,we achieve a narrow-band,wide-angle,and p-polarized thermal emission spectra.This approach,employing molecular beam epitaxy,circumvents the complexities associated with current layered structures and yields temperature-resistant emission wavelengths.Our findings contribute a promising route towards simpler,more efficient MIR optoelectronic devices.
基金National Natural Science Foundation of China,Grant/Award Number:31770608Postgraduate Research&Practice Innovation Program of Jiangsu Province,Grant/Award Number:KYCX22_1081Jiangsu Specially‐appointed Professorship Program,Grant/Award Number:Sujiaoshi[2016]20。
文摘The emergence of Li–Mg hybrid batteries has been receiving attention,owing to their enhanced electrochemical kinetics and reduced overpotential.Nevertheless,the persistent challenge of uneven Mg electrodeposition remains a significant impediment to their practical integration.Herein,we developed an ingenious approach that centered around epitaxial electrocrystallization and meticulously controlled growth of magnesium crystals on a specialized MgMOF substrate.The chosen MgMOF substrate demonstrated a robust affinity for magnesium and showed minimal lattice misfit with Mg,establishing the crucial prerequisites for successful heteroepitaxial electrocrystallization.Moreover,the incorporation of periodic electric fields and successive nanochannels within the MgMOF structure created a spatially confined environment that considerably promoted uniform magnesium nucleation at the molecular scale.Taking inspiration from the“blockchain”concept prevalent in the realm of big data,we seamlessly integrated a conductive polypyrrole framework,acting as a connecting“chain,”to interlink the“blocks”comprising the MgMOF cavities.This innovative design significantly amplified charge‐transfer efficiency,thereby increasing overall electrochemical kinetics.The resulting architecture(MgMOF@PPy@CC)served as an exceptional host for heteroepitaxial Mg electrodeposition,showcasing remarkable electrostripping/plating kinetics and excellent cycling performance.Surprisingly,a symmetrical cell incorporating the MgMOF@PPy@CC electrode demonstrated impressive stability even under ultrahigh current density conditions(10mAcm^(–2)),maintaining operation for an extended 1200 h,surpassing previously reported benchmarks.Significantly,on coupling the MgMOF@PPy@CC anode with a Mo_(6)S_(8) cathode,the assembled battery showed an extended lifespan of 10,000 cycles at 70 C,with an outstanding capacity retention of 96.23%.This study provides a fresh perspective on the rational design of epitaxial electrocrystallization driven by metal–organic framework(MOF)substrates,paving the way toward the advancement of cuttingedge batteries.
基金Project Supported by National Ninth5-year Plan of China.
文摘With the device feature's size miniaturization in very large scale integrated circuit and ultralarge scale integrated circuit towards the sub\|micron and beyond level, the next generation of IC device requires silicon wafers with more improved electrical characteristics and reliability as well as a high perfection of the wafer surface. Compared with the polished wafer with a relatively high density of crystal originated defects (e. g. COPs), silicon epi\|wafers can meet such high requirements. The current development of researches on the 150mm silicon epi\|wafers for advanced IC applications is described. The P/P\++ CMOS silicon epi\|wafers were fabricated on a PE2061 Epitaxial Reactor (made by Italian LPE Company). The material parameters of epi\|wafers, such as epi\|defects, uniformity of thickness and resistivity, transition width, and minority carrier generation lifetime for epi\|layer were characterized in detail. It is demonstrated that the 150mm silicon epi\|wafers on PE2061 can meet the stringent requirements for the advanced IC applications.
文摘A high voltage BCD process using thin epitaxial technology is developed for high voltage applications. Compared to conventional thick expitaxial technology, the thickness of the n-type epitaxial layer is reduced to 9μm,and the diffusion processing time needed for forming junction isolation diffusions is substantially reduced. The isolation diffusions have a smaller lateral extent and occupy less chip area. High voltage double RESURF LD- MOS with a breakdown voltage of up to 900V,as well as low voltage CMOS and BJT,are achieved using this high voltage BCD compatible process. An experimental high voltage half bridge gate drive IC using a coupled level shift structure is also successfully implemented, and the high side floating offset voltage in the half bridge drive IC is 880V. The major features of this process for high voltage applications are also clearly demonstrated.
文摘High quality GaN is grown on GaN substrate with stripe pattern by metalorganic chemical vapor deposition by means of epitaxial lateral overgrowth. AFM,wet chemical etching, and TEM experiments show that with a two-step ELOG procedure, the propagation of defects under the mask is blocked, and the coherently grown GaN above the window also experiences a drastic reduction in defect density. In addition, a grain boundary is formed at the coalescence boundary of neighboring growth fronts. The extremely low density of threading dislocations within wing regions makes ELOG GaN a potential template for the fabrication of nitride-based lasers with improved performance.
文摘A double layered porous silicon with different porosity is formed on a heavy doped p type Si(111) substrate by changing current density during the anodizing.Then a high quality epitaxial mono crystalline silicon film is grown on the porous silicon using an ultra high vacuum electron beam evaporator.This wafer is bonded with other silicon wafer with a thermal oxide layer at room temperature.The bonded pairs are split along the porous silicon layer during subsequent thermal annealing.Thus the epitaxial Si film is transferred to the oxidized wafer to form a silicon on insulator structure.SEM,XTEM,spreading resistance probe and Hall measurement show that the SOI structure has good structural and electrical quality.
文摘Based on a new semi empirical analytical method, namely equivalent doping transformation, the breakdown voltage and the peak field of the epitaxial diffused punch through junction have been obtained. The basic principle of this method is introduced and a set of breakdown voltage and peak field plots are provided for the optimum design of the low voltage power devices. It shows that the analytical results coincide with the previous numerical simulation well.
基金financial support from the UK EPSRC under grant No. EP/P006973/1the EPSRC National Epitaxy Facility European project H2020-ICT-PICTURE (780930)+2 种基金the Royal Academy of Engineering (RF201617/16/28)Investissments d’avenir (IRT Nanoelec: ANR-10-IRT-05 and Need for IoT: ANR-15-IDEX-02)the Chinese Scholarship Council for funding
文摘In the past few decades,numerous high-performance silicon(Si)photonic devices have been demonstrated.Si,as a photonic platform,has received renewed interest in recent years.Efficient Si-basedⅢ–Ⅴquantum-dot(QDs)lasers have long been a goal for semiconductor scientists because of the incomparable optical properties of Ⅲ–Ⅴcompounds.Although the material dissimilarity betweenⅢ–Ⅴmaterial and Si hindered the development of monolithic integrations for over 30 years,considerable breakthroughs happened in the 2000s.In this paper,we review recent progress in the epitaxial growth of various Ⅲ–ⅤQD lasers on both offcut Si substrate and on-axis Si(001)substrate.In addition,the fundamental challenges in monolithic growth will be explained together with the superior characteristics of QDs.
基金supported by the National Key Research and Development Project(No.2017YFB0403003)Shenzhen Fundamental Research Project(Nos.201773239,201888588)+4 种基金the National Natural Science Foundation of China(Nos.61774081,61322403)State Key Laboratory of Wide-Bandgap Semiconductor Power Electric Devices(No.2017KF001)the Natural Science Foundation of Jiangsu Province(No.BK20161401)the Six Talent Peaks Project in Jiangsu Province(Mo.2014XXRJ001)the Fundamental Research Funds for the C entral Universities(Nos.021014380093,021014380085)
文摘The 8 μm thick single-crystalline α-Ga2O3 epilayers have been heteroepitaxially grown on sapphire(0001) substrates via mist chemical vapor deposition technique. High resolution X-ray diffraction measurements show that the full-widths-at-halfmaximum(FWHM) of rocking curves for the(0006) and(10-14) planes are 0.024° and 0.24°, and the corresponding densities of screw and edge dislocations are 2.24 × 106 and 1.63 × 109 cm-2, respectively, indicative of high single crystallinity. The out-ofplane and in-plane epitaxial relationships are [0001] α-Ga2O3//[0001] α-Al2O3 and [11-20] α-Ga2O3//[11-20] α-Al2O3, respectively.The lateral domain size is in micron scale and the indirect bandgap is determined as 5.03 eV by transmittance spectra. Raman measurement indicates that the lattice-mismatch induced compressive residual strain cannot be ruled out despite the large thickness of the α-Ga2O3 epilayer. The achieved high quality α-Ga2O3 may provide an alternative material platform for developing high performance power devices and solar-blind photodetectors.
基金Projects(50671116,50901081) supported by the National Natural Science Foundation of China
文摘An 8 mm-high NiCoCrAlYTa coating was epitaxially built-up on a directionally solidified (DS) Ni-based superalloy blade tip by electro-spark deposition.Epitaxial morphologies of the coating and its microstructural characteristics were investigated by means of SEM,XRD and TEM etc.It is observed that the fine column-like dendrites originated from the γ'-particles or γ'-clusters of the DS substrate and are un-continuously coarsened.The β-phase particles precipitate and grow eutectically with the γ-phase.The orientation of fine column dendrites depends on electro-spark deposition processing parameters and the microstructure can be characterized with superfine γ and β phases.
文摘Epitaxial films of Yttria Stabilized Zirconia(YSZ) were successfully grown on Si substrates by RF magnetron sputter, the atomic structure and the lattice mismatch of YSZ/Si were presented. Auger electron spectroscopy, X ray diffraction and scanning
基金Project supported by the National Key Basic Research Program of China(Grant Nos.2011CB932700 and 2013CBA01603)the National Natural Science Foundation of China(Grant Nos.51472265 and 51272279)
文摘A self-powered graphene-based photodetector with high performance is particularly useful for device miniaturization and to save energy.Here,we report a graphene/silicon carbide(SiC)-based self-powered ultraviolet photodetector that exhibits a current responsivity of 7.4 m A/W with a response frequency of over a megahertz under 325-nm laser irradiation.The built-in photovoltage of the photodetector is about four orders of magnitude higher than previously reported results for similar devices.These favorable properties are ascribed to the ingenious device design using the combined advantages of graphene and SiC,two terminal electrodes,and asymmetric light irradiation on one of the electrodes.Importantly,the photon energy is larger than the band gap of SiC.This self-powered photodetector is compatible with modern semiconductor technology and shows potential for applications in ultraviolet imaging and graphene-based integrated circuits.
基金Project supported by the State Key Development Program for Basic Research of China (Grant No 2002CB613303)the National High Technology Research and Development Program for Advanced Materials of China (Grant No 2006AA03Z101)the National Natural Science Foundation of China (Grant Nos 10574078 and 50621201)
文摘Multiferroic NiFe2O4 (NFO)-BaTiO3 (BTO) bilayered thin films are epitaxially grown on (001) Nb-doped SrTiO3 (STO) substrates by pulsed-laser deposition (PLD). Different growth sequences of NFO and BTO on the substrate yield two kinds of epitaxial heterostructures with (001)-orientation, i.e. (001)-NFO/(001)-BTO/substrate and (001)- BTO/(001)-NFO/substrate. Microstructure studies from x-ray diffraction (XRD) and electron microscopies show differences between these two heterostructures, which result in different multiferroic behaviours. The heterostructured composite films exhibit good coexistence of both ferroelectric and ferromagnetic properties, in particular, obvious magnetoelectric (ME) effect on coupling response.
基金supported by the Key Specific Projects in the National Science&Technology Program,China(Grant No.2011ZX02707)the Key Research Foundationfrom the Ministry of Education of China(Grant No.JY10000925016)the Specialized Research Fund from Xianyang Normal University,China(GrantNos.13XSYK010 and 201302026)
文摘We produced epitaxial graphene under a moderate pressure of 4 mbar (about 400 Pa) at temperature 1600 ℃. Raman spectroscopy and optical microscopy were used to confirm that epitaxial graphene has taken shape continually with slight thickness variations and regularly with a centimeter order of magnitude on 4H-SiC (0001) substrates. Then using X-ray photoelectron spectroscopy and Auger electron spectroscopy, we analyzed the chemical compositions and estimated the layer number of epitaxial graphene. Finally, an atomic force microscope and a scanning force microscope were used to characterize the morphological structure. Our results showed that under 4-mbar pressure, epitaxial graphene could be produced on a SiC substrate with a large area, uniform thickness but a limited morphological property. We hope our work will be of benefit to understanding the formation process of epitaxial graphene on SiC substrate in detail.
基金Project supported by the National Natural Science Foundation of China (Grant No 90101004)
文摘Under certain growth conditions for systems with a film/substrate lattice misfit, the deposited material is known to aggregate into island-like shapes. We have obtained an analytical expression of the total free energy, which consists of strain energy, surface energy and interfacial energy of a coherent island/substrate system, and the change of equilibrium aspect ratio versus the volume of the island and the misfit of lattices in the system, which provides a broad perspective on island behaviour. These then were used to study the equilibrium shapes of the system. The results show that in order to minimize the total free energy, a coherent island will have a particular height-to-width aspect ratio, called equilibrium aspect ratio, that is a function of the island volume and misfit. The aspect ratio is increased with increasing island volume at a fixed misfit, and with increasing misfit strain between the island and substrate at a fixed island volume. Moreover, the effect of misfit dislocation on the equilibrium shape of the island is also examined. The results obtained are in good agreement with experiment of observations and thus can serve as a basis for interpreting the experiments.
基金financially sponsored by the National Natural Science Foundation of China(Grant No.22075223,22179104)the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing(Wuhan University of Technology)(2021-ZD-4)the Fundamental Research Funds for the Central Universities(No.2020-YB-012)。
文摘The epitaxial heterostructure can be rationally designed based on the in situ growth of two compatible phases with lattice similarity,in which the modulated electronic states and tuned adsorption behaviors are conducive to the enhancement of electrocatalytic activity.Herein,theoretical simulations first disclose the charge transfer trend and reinforced inherent electron conduction around the epitaxial heterointerface between Ru clusters and Ni_(3)N substrate(cRu-Ni_(3)N),thus leading to the optimized adsorption behaviors and reduced activation energy barriers.Subsequently,the defectrich nanosheets with the epitaxially grown cRu-Ni_(3)N heterointerface are successfully constructed.Impressively,by virtue of the superiority of intrinsic activity and reaction kinetics,such unique epitaxial heterostructure exhibits remarkable bifunctional catalytic activity toward electrocatalytic OER(226 mV@20 mA cm^(−2))and HER(32 mV@10 mA cm^(−2))in alkaline media.Furthermore,it also shows great application prospect in alkaline freshwater and seawater splitting,as well as solar-to-hydrogen integrated system.This work could provide beneficial enlightenment for the establishment of advanced electrocatalysts with epitaxial heterointerfaces.
基金the National Natural Science Foundation of China(Grant Nos.11934016 and 12074334)the Key R&D Program of Zhejiang Province,China(Grant Nos.2020C01019 and 2021C01002)the Fundamental Research Funds for the Central Universities of China.
文摘Complex oxide heterointerfaces can host a rich of emergent phenomena,and epitaxial growth is usually at the heart of forming these interfaces.Recently,a strong crystalline-orientation-dependent two-dimensional superconductivity was discovered at interfaces between KTaO_(3)single-crystal substrates and films of other oxides.Unexpectedly,rare of these oxide films was epitaxially grown.Here,we report the existence of superconductivity in epitaxially grown LaVO_(3)/KTaO_(3)(111)heterostructures,with a superconducting transition temperature of~0.5 K.Meanwhile,no superconductivity was detected in the(001)-and(110)-orientated LaVO_(3)/KTaO_(3)heterostructures down to 50 mK.Moreover,we find that for the LaVO_(3)/KTaO_(3)(111)interfaces to be conducting,an oxygen-deficient growth environment and a minimum LaVO_(3)thickness of~0.8 nm(~2 unit cells)are needed.