期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Synthesis and Properties of Novel Epoxidized Soybean Oil-modified Phenolic Resin /Montmorillonite Nanocomposites 被引量:1
1
作者 HU Jianfeng SITU Yue XU Li HUANG Hong FU Heqing ZENG Hanwei CHEN Huanqin 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2008年第4期431-435,共5页
The novel epoxidized soybean oil-modified-phenolic resin/clay nanocomposites(ESO-M-PR/ CN) was prepared. The coupling agent-benzyldimethylphenylammonium chloride [C6H5CH2N^+(CH3)2C6H5Cl^- , B2MP] was adopted to m... The novel epoxidized soybean oil-modified-phenolic resin/clay nanocomposites(ESO-M-PR/ CN) was prepared. The coupling agent-benzyldimethylphenylammonium chloride [C6H5CH2N^+(CH3)2C6H5Cl^- , B2MP] was adopted to modify the interface between the organic and inorganic phases. The effect of the nanocomposite structure on its physical and chemical properties was discussed. During the synthesizing process of ESO-M-PR/CN, the phenol hydroxyl was etherified by ESO or ESO epoxy resin prepolymer to provide long ESO epoxy segments. Long ESO epoxy resin chain segments enhanced the crosslink density of ESO-M- PR/CN. The thermal and mechanical properties exhibit a significant improvement. The temperature at which a weight loss of 5% occurs increases from 287.1 ℃ to 402.3 ℃. The flexural strength increases by 25%, while the flexural modulus increases by 39%. Moreover, the properties of resin were enhanced by the effect of the inorganic nanoparticles, while the size of the nanomontmorillonites in the phenolic resin was characterized with a scanning electron microscope. The particle size of inorganic montmorillonites in the modified system is less than 100 nm. 展开更多
关键词 epoxidized soybean oil phenolic resin flexural strength
下载PDF
Melt Rheology of Poly(Lactic Acid) Plasticized by Epoxidized Soybean Oil 被引量:3
2
作者 XU Yuqiong YOU Min QU Jinping 《Wuhan University Journal of Natural Sciences》 CAS 2009年第4期349-354,共6页
This study investigated that epoxidized soybean oil (ESO) was blended as plasticizer with poly (lactic acid) (PLA) and its effects on the melt rheological properties, such as melt flow index, apparent shear visc... This study investigated that epoxidized soybean oil (ESO) was blended as plasticizer with poly (lactic acid) (PLA) and its effects on the melt rheological properties, such as melt flow index, apparent shear viscosity, and melt strength of the blends. PLA was blended by the twin-screw plastic extruder at five mass fractions: 3%, 6%, 9%, 12%, and 15% (based on PLA mass). Melt flow index (MFI) was examined with a melt flow indexer. The results indicate that the blends of PLA/ESO had higher MFI than pure PLA, except for MFI at 9% reaching to the lowest point, even lower than that of pure PLA. Melt rheological properties were studied by a capillary rheometer in a temperature range of 160-180℃. The blends exhibited shear-thinning behavior and the apparent shear viscosity was well described by the power law in this shear rate region. The melt strength of PLA plasticized with 6% ESO reached the maximums. ESO was more effective in increasing the melt strength at the mass fractions less than 6%, which could toughen the blends to some extent. Therefore, the authors suggested the optimum addition level of 6%-9% ESO will get good melt rheological performance balance. 展开更多
关键词 poly (lactic acid) (PLA) epoxidized soybean oil melt flow index shear viscosity melt strength
原文传递
Bio-based removable pressure-sensitive adhesives derived from carboxyl-terminated polyricinoleate and epoxidized soybean oil 被引量:2
3
作者 Yu-Fei Lei Xiao-Lin Wang +2 位作者 Bo-Wen Liu Li Chen Yu-Zhong Wang 《Chinese Chemical Letters》 SCIE CAS CSCD 2021年第2期875-879,共5页
A novel kind of fully bio-based PSAs we re obtained through the curing reaction between two components derived from the plant oils:carboxyl-terminated polyricinoleate(PRA) fro m the castor oil and epoxidized soybean o... A novel kind of fully bio-based PSAs we re obtained through the curing reaction between two components derived from the plant oils:carboxyl-terminated polyricinoleate(PRA) fro m the castor oil and epoxidized soybean oil(ESO).The get content,glass transition temperature(Tg),rheological behavior,tensile strength,creep resistance and 180° peel strength of the PSAs were feasibly tailored by adjusting the component ratio of ESO to PRA.At low cross-linking level,the PSAs behaved like a viscous liquid and did not possess enough cohesiveness to sustain the mechanical stress during peeling,The PSAs cross-linked at or near the optimal stoichiometric conditions displayed an adhesive(interfacial) failure between the substrate and the adhesive layer,which were associated with the lowest adhesion levels.The PSAs with the dosage amount of ESO ranging from 10.20 wt% were tacky and flexible,which exhibited 1800 peel strength ranging from 0.4~2.3 N/cm;and could be easily removed without any residues on the adherend.The process for the preparation of the fully bio-based PSAs was environmentally friendly without using any orga nic solve nt or other toxic chemical,herein showing the great potential as sustainable materials. 展开更多
关键词 Pressure sensitive adhesive Polyricinoleate epoxidized soybean oil VISCOELASTICITY REMOVABILITY
原文传递
Synthesis and Application of UV-curable Phosphorous-Containing Acrylated Epoxidized Soybean Oil-based Resins 被引量:1
4
作者 Yun HU Puyou JIA +4 位作者 Qianqian SHANG Meng ZHANG Guodong FENG Chengguo LIU Yonghong ZHOU 《Journal of Bioresources and Bioproducts》 EI 2019年第3期49-57,共9页
A novel phosphorous-containing acrylated epoxidized soybean oil-based(P-AESO)resin was developed via the ring-opening reaction of epoxidized soybean oil(ESO)with diphenylphosphinic chloride(DPPC),followed by acrylatio... A novel phosphorous-containing acrylated epoxidized soybean oil-based(P-AESO)resin was developed via the ring-opening reaction of epoxidized soybean oil(ESO)with diphenylphosphinic chloride(DPPC),followed by acrylation of the resulting groups.The chemical structure was characterized by Fourier transform infrared spectroscopy(FT-IR),and ^(1)H nuclear magnetic resonance(^(1)H NMR).Subsequently,the viscosity and volumetric shrinkage of the obtained P-AESO resins were studied.Then the oligomer was formulated into UV-curable coatings,and the mechanical,thermal,and coating properties of the resulting UV-cured bioresins were studied by tensile testing,dynamic mechanical thermal analysis(DMA),thermogravimetric analysis(TGA)coupled with FT-IR spectroscopy(TGA-FT-IR),hardness,adhesion,pencil hardness and chemical resistance.Furthermore,the UV-curing behavior of the P-AESO resin was determined by real-time realtime infrared(RT-IR).Meanwhile,compared with coating from acrylated epoxidized soybean oil(AESO),the P-AESO system coatings showed better volumetric shrinkage,excellent adhesion,and enhanced thermal and glass transition temperature(Tg)while maintaining reasonably final C=C conversions and cross-link density.For instance,the obtained P-AESO/trimethylolpropanetriacrylate(TMPTA)20 material possessed a volumetric shrinkage of 4.1%,Tg of 115.6℃,char yield of 9.47%,and final C=C conversions of 81.4%respectively,which exhibited superior values than that of the AESO/TMPTA20 material.The improvement of the P-AESO coating performances could contribute to the architectures that combined the structural features of phosphorous-containing rigid benzene.The developed P-AESO resin is promising for applications in the UV-curable coatings. 展开更多
关键词 biobased UV-curable coatings acrylated epoxidized soybean oil diphenylphosphinic chloride
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部