期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Research on thermal insulation materials properties under HTHP conditions for deep oil and gas reservoir rock ITP-Coring 被引量:1
1
作者 Zhi-Qiang He He-Ping Xie +4 位作者 Ling Chen Jian-Ping Yang Bo Yu Zi-Jie Wei Ming-Zhong Gao 《Petroleum Science》 SCIE EI CAS CSCD 2024年第4期2625-2637,共13页
Deep oil and gas reservoirs are under high-temperature conditions,but traditional coring methods do not consider temperature-preserved measures and ignore the influence of temperature on rock porosity and permeability... Deep oil and gas reservoirs are under high-temperature conditions,but traditional coring methods do not consider temperature-preserved measures and ignore the influence of temperature on rock porosity and permeability,resulting in distorted resource assessments.The development of in situ temperaturepreserved coring(ITP-Coring)technology for deep reservoir rock is urgent,and thermal insulation materials are key.Therefore,hollow glass microsphere/epoxy resin thermal insulation materials(HGM/EP materials)were proposed as thermal insulation materials.The materials properties under coupled hightemperature and high-pressure(HTHP)conditions were tested.The results indicated that high pressures led to HGM destruction and that the materials water absorption significantly increased;additionally,increasing temperature accelerated the process.High temperatures directly caused the thermal conductivity of the materials to increase;additionally,the thermal conduction and convection of water caused by high pressures led to an exponential increase in the thermal conductivity.High temperatures weakened the matrix,and high pressures destroyed the HGM,which resulted in a decrease in the tensile mechanical properties of the materials.The materials entered the high elastic state at 150℃,and the mechanical properties were weakened more obviously,while the pressure led to a significant effect when the water absorption was above 10%.Meanwhile,the tensile strength/strain were 13.62 MPa/1.3%and 6.09 MPa/0.86%at 100℃ and 100 MPa,respectively,which meet the application requirements of the self-designed coring device.Finally,K46-f40 and K46-f50 HGM/EP materials were proven to be suitable for ITP-Coring under coupled conditions below 100℃ and 100 MPa.To further improve the materials properties,the interface layer and EP matrix should be optimized.The results can provide references for the optimization and engineering application of materials and thus technical support for deep oil and gas resource development. 展开更多
关键词 Deep oil and gas reservoir rock In situ temperature-preserved coring(ITPCoring) Hollow glass microsphere/epoxy resin thermal insulation materials(HGM/EP materials) High-temperature and high-pressure(HTHP) Physical and mechanical properties
下载PDF
Preparation and Properties of Y_(2)O_(3)-PF Alternating Coating on Polymer Matrix Composite Material Surface
2
作者 Li Xuewu Zhang Jiahao +5 位作者 Feng Yuxi Liu Ming Shi Tian Wang Haidou Bai Yu Wang Yu 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2024年第10期2777-2785,共9页
High-performance yttrium oxide-phenolic resin(Y_(2)O_(3)-PF)alternating coating was prepared on epoxy resin-based composite material using supersonic plasma spraying and dual-channel powder feeding technique.Y_(2)O_(3... High-performance yttrium oxide-phenolic resin(Y_(2)O_(3)-PF)alternating coating was prepared on epoxy resin-based composite material using supersonic plasma spraying and dual-channel powder feeding technique.Y_(2)O_(3)-coated PF(Y_(2)O_(3)/PF)powder was firstly sprayed onto the substrate,forming a transition layer,and then the spherical Y_(2)O_(3) powder and Y_(2)O_(3)/PF powder were alternately deposited to form the composite alternating coating.Results show that the alternating coating is mainly composed of deposited Y_(2)O_(3)/PF powder.The bonding strength between coating and substrate is as high as 26.48 MPa with the single-test maximum bonding strength of 28.10 MPa,and shear strength reaches 24.30 MPa.Additionally,the heat transfer effect caused by external Y_(2)O_(3) particles gradually softens and even melts PF,thus effectively avoiding the damage of high temperature to molecular structure and thereby promoting the crosslinking and curing effects of resin during the deposition process.In the meantime,the unmelted Y_(2)O_(3) powder results in the shot peening effect,which washes out and eliminates the powder particles with inferior deposition effect,ultimately improving the physical and chemical properties of the alternating coating. 展开更多
关键词 Y_(2)O_(3)-PF alternating coating epoxy resin composite material supersonic plasma spraying mechanical property
原文传递
A Low Temperature Vulcanized Transparent Silane Modified Epoxy Resins for LED Filament Bulb Package 被引量:6
3
作者 Xiong-Fa Yang Jia Liu +3 位作者 Qiong Chen Yan-Ping Shen Hong-Zhi Liu Guo-Qiao Lai 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2018年第5期649-654,共6页
In this work, low-temperature vulcanized, transparent silane modified epoxy resins for LED filament bulb package were prepared. Firstly, transparent silane modified epoxy resins were produced through a controllable so... In this work, low-temperature vulcanized, transparent silane modified epoxy resins for LED filament bulb package were prepared. Firstly, transparent silane modified epoxy resins were produced through a controllable sol-gel method using γ-(2,3-epoxypropoxy)propytrimethoxysilane and dimethyldiethoxylsilane. The features of the reaction were investigated and the products were characterized in detail. Subsequently, various curing agents were explored to prepare transparent silane modified epoxy resins. The silane modified epoxy resins cured by PEA-230 at a fairly low temperature(40 °C/2 h then 60 °C/1 h) exhibited excellent thermal stability with a thermal degradation temperature as high as 316.5 °C and adjustable hardness between 40-60 shore A. The application tests showed the materials obtained were good candidates for LED filament bulb package. 展开更多
关键词 Silane modified epoxy resins LED filament bulb Package materials
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部