ZnS/bacterial cellulose/epoxy resin (ZnS/BC/E56) nanocomposites with good transparency and flexibil-ity were prepared and characterized. When the precursor Zn^2+ concentrations were not more than I wt%, the size of...ZnS/bacterial cellulose/epoxy resin (ZnS/BC/E56) nanocomposites with good transparency and flexibil-ity were prepared and characterized. When the precursor Zn^2+ concentrations were not more than I wt%, the size of the introduced ZnS nanoparticles was smaller than 50 nm and the distribution was homo-geneous within the composites. Under the condition, outstanding transmittance more than 70g in the visible light was obtained. By incorporation of ZnS nanoparticles with excellent thermo-optic stability to the composites, the thermo-optic coefficient was obviously increased from -361 × 10^-6 to -310 × 10^-6K^-1. The good flexibility, optical and mechanical properties endow the nanocomposites potential applica- tions in the flexible optoelectronic materials.展开更多
基金financially supported by the Program of Introducing Talents of Discipline to Universities (No. B07024)the Shanghai Leading Academic Discipline Project (No. B603)+1 种基金the National Natural Science Foundation of China (No. 51273043)the Project of the Action on Scientists and Engineers to Serve Enterprises (No. 2009GJE20016)
文摘ZnS/bacterial cellulose/epoxy resin (ZnS/BC/E56) nanocomposites with good transparency and flexibil-ity were prepared and characterized. When the precursor Zn^2+ concentrations were not more than I wt%, the size of the introduced ZnS nanoparticles was smaller than 50 nm and the distribution was homo-geneous within the composites. Under the condition, outstanding transmittance more than 70g in the visible light was obtained. By incorporation of ZnS nanoparticles with excellent thermo-optic stability to the composites, the thermo-optic coefficient was obviously increased from -361 × 10^-6 to -310 × 10^-6K^-1. The good flexibility, optical and mechanical properties endow the nanocomposites potential applica- tions in the flexible optoelectronic materials.