Based on the analysis of the main failures discovered in pavement on steel deck plate and the demanding service condition of the pavement on steel deck, high-temperature rutting test, low-temperature bending test and ...Based on the analysis of the main failures discovered in pavement on steel deck plate and the demanding service condition of the pavement on steel deck, high-temperature rutting test, low-temperature bending test and controlled stress flexural fatigue test are used to study the performance of asphalt mixtures modified by epoxy resin including high-temperature stability, low-temperature cracking-resistance, and fatigue cracking-resistance, which are served to evaluate the modification effect of epoxy resin of different contents. With the addition of epoxy resin, all the three performances are improved greatly. However, when the amount of epoxy resin added is over a certain value, the modification effect will be stable with no extra benefit detected. Finally, in terms of the properties of the three respects, 20%, 30%, 30% are given separately as the proposal adding contents.展开更多
In this paper,plasma fluorination is combined with plasma silicon deposition to achieve step gradient modification on an epoxy resin surface.The physicochemical characteristics of samples are investigated and the elec...In this paper,plasma fluorination is combined with plasma silicon deposition to achieve step gradient modification on an epoxy resin surface.The physicochemical characteristics of samples are investigated and the electrical performances measured.The obtained results show that compared with untreated and single treated samples,the samples treated by step gradient modification significantly improve the flashover performance.According to experiment and simulation,the mechanism explanations are summarized as follows.First,it is found that the step gradient conductivity can effectively optimize the electric field distribution of a needle-needle electrode.Then,step gradient modification suppresses the accumulation of surface charge at the triple junction and makes the charge distribution more uniform.Furthermore,it can accelerate the surface dissipation on a high electrical field region and control the dissipation rate on a low electrical field region.All these results can restrain surface discharge and increase the flashover voltage.The step gradient modification method proposed in this paper provides a new idea for improving the surface insulation performance.展开更多
A novet toughened epoxy resin was obtained by using a precopotymer of epoxy resin and hydroxy-terminated butadiene-acrylonitrile copolymer(HTBN)and amine curing agent.The cured toughened resin has excellent mechanical...A novet toughened epoxy resin was obtained by using a precopotymer of epoxy resin and hydroxy-terminated butadiene-acrylonitrile copolymer(HTBN)and amine curing agent.The cured toughened resin has excellent mechanical properties due to the two-phase structure,which has been observed from SEM and TEM.展开更多
A bisphenol epoxy resin was used as modifier to increase the heat resistance of condensed poly-nuclear aromatic (COPNA) resin. The basic properties of COPNA resin and modified resin were characterized by Fourier tra...A bisphenol epoxy resin was used as modifier to increase the heat resistance of condensed poly-nuclear aromatic (COPNA) resin. The basic properties of COPNA resin and modified resin were characterized by Fourier transform infrared spectroscopy (FT-IR), nuclear magnetic resonance spectroscopy (1H-NMR), vapor pressure osmometry (VPO) and elemental analysis (EA). Average structural parameters of resins were calculated by the improved Brown-Ladner method, and heat resistance of resins was tested by thermogravimetric analysis (TGA). The chemical structure, mechanical properties and heat resistivity of the resin/graphite composites prepared with different resins were compared. The results show that the adhesive property and heat resistance of COPNA resin can be remarkably improved by addition of 5 wt.% epoxy resin. The reason is that the reactions between epoxy groups of epoxy resin and hydroxyl groups of COPNA resin improve the heat resistance and adhesive property of COPNA resin. Electric motor brushes with good mechanical properties and low electrical resistivity were successfully prepared by using the modified resin as binder.展开更多
The synthesis and characterization of hyperbranched polyester (HBP) with different molecular weight are studied. The effect of HBP on the modification of epoxy resins cured with anhydride is mainly discussed. The ch...The synthesis and characterization of hyperbranched polyester (HBP) with different molecular weight are studied. The effect of HBP on the modification of epoxy resins cured with anhydride is mainly discussed. The characteristics of HBP and the morphologies of cured system are determined by nuclear magnetic resonance spectroscopy (NMR), gel permeation chromatography (GPC) and scanning electron microscope (SEM). The impact strength of cured system is detected and Fourier transform infrared (FTIR) measurements were used to pursue the curing process. The investigation shows that HBP can improve the toughness by forming copolymer networks between epoxy resins, HBP and anhydride. Moreover, when the molecular weight of HBP is 1342g/mol the toughening effect is the best, and the changes of toughness are small with the increase of molecular weight of HBP to 3500 g/mol.展开更多
A new kind of reactive toughening accelerator for epoxy resin, amine-teminated hyperbranched polymer (H2O-NMe2) was synthesized and characterized by FT-IR spectroscopy. Dynamic mechanical analysis (DMA) was used to st...A new kind of reactive toughening accelerator for epoxy resin, amine-teminated hyperbranched polymer (H2O-NMe2) was synthesized and characterized by FT-IR spectroscopy. Dynamic mechanical analysis (DMA) was used to study the glass transition temperature (Tg), loss factor (tanδ) and activation energy (Ea) by using multiplexing frequency. The results show that the Ea at glassy relaxation process of modified system is about 70-80 kJ/mol higher than that of unmodified system, and the high modulus and good thermal properties are still maintained.展开更多
A graphene oxide/nano-silica(GOS)hybrid was rapidly and easily synthesized using graphene oxide(GO)and nano-silica(nano-SiO_(2))as raw materials,and the synthesized GOS was used to improve the mechanical properties of...A graphene oxide/nano-silica(GOS)hybrid was rapidly and easily synthesized using graphene oxide(GO)and nano-silica(nano-SiO_(2))as raw materials,and the synthesized GOS was used to improve the mechanical properties of epoxy resin(EP).The modified EP with different mass fractions of GOS(0,0.1%,0.2%,0.3%and 0.4%)were prepared and studied.The structure,thermal stability,mechanical properties,fracture toughness and failure morphology of the modified EP were analyzed.The results showed that the tensile strength of GOS modified EP increased from 40.6 MPa to 80.2 MPa compared with EP,the critical stress intensity factor of GOS modified EP increased by 65.9%from 0.82 MPa·m^(1/2)to 1.36 MPa·m^(1/2),indicating a significant enhancement in fracture toughness.In addition,failure morphology was observed by scanning electron microscopy(SEM)observation.The toughness mechanism of the modified EP was also discussed.Finally,the thermal stability of the modified EP was improved by the addition of GOS.Compared with neat EP,the initial thermal degradation temperature and glass transition temperature of GOS modified EP increased by 4.5℃and 10.3℃,respectively.展开更多
Epoxy-based composites containing montmorillonite(MMT)modified by silylation reaction withγ-aminopropyltriethoxysilane(γ-APTES)and 3-(glycidyloxypropyl)trimethoxysilane(GPTMS)are successfully prepared.The effects of...Epoxy-based composites containing montmorillonite(MMT)modified by silylation reaction withγ-aminopropyltriethoxysilane(γ-APTES)and 3-(glycidyloxypropyl)trimethoxysilane(GPTMS)are successfully prepared.The effects of filler loading and surface modification on the electrical and thermal properties of the epoxy/MMT composites are investigated.Compared with the pure epoxy resin,the epoxy/MMT composite,whether MMT is surface-treated or not,shows low dielectric permittivity,low dielectric loss,and enhanced dielectric strength.The MMT in the epoxy/MMT composite also influences the thermal properties of the composite by improving the thermal conductivity and stability.Surface functionalization of MMT not only conduces to the better dispersion of the nanoparticles,but also significantly affects the electric and thermal properties of the hybrid by influencing the interfaces between MMT and epoxy resin.Improved interfaces are good for enhancing the electric and thermal properties of nanocomposites.What is more,the MMT modified with GPTMS rather thanγ-APTES is found to have greater influence on improving the interface between the MMT filler and polymer matrices,thus resulting in lower dielectric loss,lower electric conductivity,higher breakdown strength,lower thermal conductivity,and higher thermal stability.展开更多
Hydraulic fracturing is a critical technology for the economic development of unconventional oil and gas reservoirs.The main factor influencing fracture propping and reservoir stimulation effect is proppant performanc...Hydraulic fracturing is a critical technology for the economic development of unconventional oil and gas reservoirs.The main factor influencing fracture propping and reservoir stimulation effect is proppant performance.The increasing depth of fractured oil and gas reservoirs is causing growing difficulty in hydraulic fracturing.Moreover,the migration of conventional proppants within the fracture is always limited due to small fracture width and rigid proppant structure.Thus,proppants with good transportation capacity and fracture propping effects are needed.First,a novel self-generated proppant based on toughened low-viscosity and low-density epoxy resin was developed to satisfy this demand.Then,proppant performances were evaluated.Low-viscosity and low-density epoxy resin was generated when the thiol-ene click chemical reaction product of eugenol and 1-thioglycerol reacts with the epichlorohydrin.Then,the resin was toughened with graphite particles to increase its compressive strength from50.8 to 72.1 MPa based on micro-cracking mechanism and crazing-nail anchor mechanism.The adduct of diethylene triamine and butyl glycidyl ether and the Si O2 nanoparticles were treated as the curing agent and emulsifier respectively to form the emulsion.The emulsion is transformed into solid particles of various sizes within a reservoir to prop the fracture.Evaluation shows good migration capacity of this self-generated proppant due to the low density of epoxy resin.展开更多
Core-shell toughening particles are structured composite particles consisting of generally two different components, one at the center as a rubbery elastic core and surrounding by the second as a glassy inelastic shel...Core-shell toughening particles are structured composite particles consisting of generally two different components, one at the center as a rubbery elastic core and surrounding by the second as a glassy inelastic shell. The design, preparation, and application of core-shell polymer particles have been briefly reviewed. Morphological characteristics of the core-shell particles by transmission electron microscopy(TEM) and scanning electron microscopy(SEM) are focused. The vital factors that are useful to control core-shell morphology and toughening properties including core-shell monomer species, polymerization conditions, cross-linking reagents, synthetic method, and post-processing techniques are analyzed. Distinguished properties are mainly considered as the most desirable features that endow core-shell polymer particles with various applicabilities, particularly as effectively toughening components in brittle epoxy resin and polylactide that are substrate of copper clad laminate widely used in the modern electronic world and environmentally friendly materials that are useful as packaging films, disposable tableware, biomedical equipment, and new energy vehicles.展开更多
Toughened epoxy resin with excellent properties was obtained by adding organic acid anhydride curing agent and hydroxy-terminated butadiene-acrylonitrile copolymer (HTBN), which is cheaper than CTBN. The anhydride rea...Toughened epoxy resin with excellent properties was obtained by adding organic acid anhydride curing agent and hydroxy-terminated butadiene-acrylonitrile copolymer (HTBN), which is cheaper than CTBN. The anhydride reacts with both epoxy groups on epoxy resin and hydroxyl groups on HTBN. As a result the soft long chains of HTBN and the rigid chain of epoxy resin form one network, giving the resin toughness. Two-phase structure of the toughened resin was observed by SEM and TEM.展开更多
The thermal and dimensional stability of epoxy resin(EP)in-situ modified by cyanate ester(CE)and polydimethylsiloxane(PDMS)are investigated by means of experiments and numerical simulation.Thermal gravimetric analysis...The thermal and dimensional stability of epoxy resin(EP)in-situ modified by cyanate ester(CE)and polydimethylsiloxane(PDMS)are investigated by means of experiments and numerical simulation.Thermal gravimetric analysis(TGA)and differential scanning calorimeter(DSC)are used to analyze the heat resistance of the modified EP.The dimensional stability is characterized by the volume shrinkage of the series PDMS/CE/EP obtained by the density method.The chemical structure of the PDMS/CE/EP is analyzed by Fourier transform infrared spectroscopy(FTIR).The results of TGA and DSC indicate that the thermal stability of PDMS/CE/EP decreases firstly and then increases with the increase in the amount of CE.The addition of PDMS shows a slight effect on the thermal stability.The 40%CE makes the blending system exhibit the lowest initial decomposition temperature,which reduces by 15.5%and 40.8%compared with pure EP and CE,respectively.The FTIR results suggested that the influence of CE on the thermal stability of the modified EP is mainly ascribed to the generation of oxazolidinone ring with low thermal stability and the increase in the triazine ring with high thermal stability.The volume shrinkage measurement results show that the introduction of CE and PDMS are both beneficial to the improvement of the dimensional stability of the blending systems.The in-situ addition of 80%CE shows the lowest volume shrinkage of6.11%.The thermal stress distribution of PDMS/CE/EP generated during the solidification process is simulated by the finite element analysis.The results suggested that the introduction of 80%CE into EP results in the lowest thermal stress in the blending system,which indicates that the system has the lowest volume shrinkage,which agrees well with the experimental results.展开更多
Toughening the petroleum-based epoxy resin blends with bio-based modifiers without compromising their modulus,mechanical strength,and other properties is still a big challenge in view of the sustainability.In this stu...Toughening the petroleum-based epoxy resin blends with bio-based modifiers without compromising their modulus,mechanical strength,and other properties is still a big challenge in view of the sustainability.In this study,a bio-based liquid crystal epoxy resin(THMT-E P)with an s-triazine ring structure was utilized to modify a petroleum-based bisphenol A epoxy resin(E51)with 4,4'-diaminodiphenylsulfone(DDS)as a curing agent,and the blended systems were evaluated for their thermal stability,mechanical properties,and flame retardancy.The results showed that the impact strength of the blended system initially increased and then decreased with the increase in THMT-EP content,and it reached the a maximum value of 26.5 kJ/m^(2)when the THMT-EP content was 5%,which was 31.2%higher than that of E51/DDS.Notably,the flexural strength,modulus,and glass transition tem perature of the blended system were all simultaneously improved with the addition of THMT-EP.At the same time,the addition of THMT-EP enhanced the flame retardancy of the system by increasing the char yield at 700℃and decreasing the peak heat release rate and total heat release rate.This work paves the way for a more sustainable improvement in the comprehensive performance of epoxy resin.展开更多
It is essential to design economic and efficient tougheners to prepare high-performance epoxy resin;however,this has remained a huge challenge.Herein,an eco-friendly,low-cost,and facile-fabricated bio-based hyperbranc...It is essential to design economic and efficient tougheners to prepare high-performance epoxy resin;however,this has remained a huge challenge.Herein,an eco-friendly,low-cost,and facile-fabricated bio-based hyperbranched toughener,carboxylic acid-functionalized tannic acid(CATA),was successfully prepared and applicated to the preparation of solvent-free epoxy resins.The mechanical performance,morphology,structural characterization,and thermal characterization of toughened epoxy resin system were studied.The toughened epoxy resin system with only 1.0wt%CATA reached the highest impact strength,111%higher than the neat epoxy resin system.Notably,the tensile strength and elongation at break of toughened epoxy resin systems increased moderately with increasing CATA loading.Nonphase-separated hybrids with significant toughening effect were obtained.Additionally,the thermal stabilities of toughened epoxy resin systems decreased with increasing CATA loading.This study provides an eco-friendly,cost-effective,and facile approach for the preparation of high-performance,solvent-free epoxy resins with potential for practical applications in sealing integrated circuits and electrical devices fields.展开更多
Perfluorinated alkyl silicone oil (PFASO) was successfully synthesized from N-ethyl-N- hydroxylethyl perfluorinated octane sulfonamide, succinie anhydride and amino silicone oil by esterification and amide reaction ...Perfluorinated alkyl silicone oil (PFASO) was successfully synthesized from N-ethyl-N- hydroxylethyl perfluorinated octane sulfonamide, succinie anhydride and amino silicone oil by esterification and amide reaction at moderate temperature in the presence of different catalysts. The chemical structure of the synthesized samples was characterized by Fourier transform infrared spectroscopy (FT-IR), the relative molecular mass(MM) and molecular mass distribution(MMD) of PFASO were tested by gel filtration chromatography(GFC). A commercial epoxy resin (DGEBA) was modified with PFASO, with the content of PFASO 1-5 phr. Thermo-gravimetric analysis (TGA), impact tests, scanning electron microscope (SEM) and water contact angle test were applied to provide accurate results on the thermal stability, toughness and hydrophobicity of PFASO/epoxy complex. The experimental results reveal that epoxy resins can be successfully modified by adding a small amount of as-synthesized modifiers via simple direct mixing, and verify that the as-synthesized modifier can improve the toughness and hydrophobicity of epoxy resin without sacrificing its thermal properties.展开更多
Two kinds of tough ductile heatresisting thermoplastic, namely bisphenol A polysulfone (PSF) and polyethersulfone (PES) were used to toughen thermoset epoxy resin. A systematic study on the relationship between the mo...Two kinds of tough ductile heatresisting thermoplastic, namely bisphenol A polysulfone (PSF) and polyethersulfone (PES) were used to toughen thermoset epoxy resin. A systematic study on the relationship between the molecular weight and the terminal group of the thermoplastic modifier and the fracture toughness of the modified resin was carried out. The morphology of PSF modified epoxy resin was surveyed. With the same kind of PSF the structure of the epoxy resin and the toughening effect of PSF was also investigated. The fractography of PSF, particle modified epoxy was examined in detail with SEM. The contribution of every possible energy absorption process has been discussed. Crack pinning mechanism seems to be the most important toughening mechanism for tough ductile thermoplastic PSF particle modified epoxy system.展开更多
Diglycidyl 4,5-epoxy tetrahydro phthalate/methyl tetrahydrophthalic anhydride (TDE-85/MeTHPA) epoxy resin modified by polyurethane (PU) was prepared with 1,4-butanediol (1,4-BDO), trimethylol propane (TMP) and...Diglycidyl 4,5-epoxy tetrahydro phthalate/methyl tetrahydrophthalic anhydride (TDE-85/MeTHPA) epoxy resin modified by polyurethane (PU) was prepared with 1,4-butanediol (1,4-BDO), trimethylol propane (TMP) and polyurethane prepolymer synthesized by polypropylene glycol and toluene diisocynate. Chemical reaction and curing mechanism of this system were discussed by incorporating the results of infra spectrum analysis. The results indicate that the epoxy polymeric network I is obtained by the curing reaction between TDE-85 and MeTHPA, while the PU polymeric network II is obtained by the chain-extended and crosslinking reaction between 1,4-BDO, TMP and polyurethane prepolymer(PUP). The graft chemical bonds are formed between polymer networks I and II that therefore increase the degree of blend and compatibility between epoxy polymer and PU.展开更多
Poly(butylene terephthalate)-b-poly(tetramethylene glycol) (PBT-b-PTMG) was used as rheology modifier for the epoxy resin. The segmental copolymer formed spherulites in the epoxy medium. This copolymer was very effect...Poly(butylene terephthalate)-b-poly(tetramethylene glycol) (PBT-b-PTMG) was used as rheology modifier for the epoxy resin. The segmental copolymer formed spherulites in the epoxy medium. This copolymer was very effective in endowing yield stresses to the liquid resin. The PTMG segment brought in a lowering of the dissolution temperature of the spherulites in the epoxy gel. The cured resin with PBT-b-PTMG as modifier was two-phase materials. The rheology modifier improved the mechanical properties of the cured resin as well. The flexible PTMG segments, however, were not in favour of the toughening effect of the modifier. This was attributed to the large domain size of the dispersed phase.展开更多
A series of solid-solid interfaces, consisting of ceramic-epoxy resin interface samples with a tip-plate electrode, were investigated by performing partial discharge tests and realtime electrical tree observations. A ...A series of solid-solid interfaces, consisting of ceramic-epoxy resin interface samples with a tip-plate electrode, were investigated by performing partial discharge tests and realtime electrical tree observations. A toughening agent was added to the epoxy resin at different ratios for comparison. The impact strength, differential scanning calorimetry (DSC) and dielectric properties of the cured compositions and ceramic were tested. The electric field strength at the tip was calculated based on Maxwell's theory. The test results show that the addition of a toughener can improve the impact strength of epoxy resin but it decreases the partial discharge inception voltage (PDIV) of the interface sample. At the same time, toughening leads to complex branches of the electrical tree. The simulation result suggests that this reduction of the PDIV cannot be explained by a change of permittivity due to the addition of a toughening agent. The microstructural change caused by toughening was considered to be the key factor for lower PDIV and complex electrical tree branches.展开更多
Epoxy resins toughened with carboxyl-terminated butadieneacrylonitrile copolymers (CTBN) are two-phase thermosets. The network of the in situ formed rubber particles depends upon the curing mechanism of the resin. Whe...Epoxy resins toughened with carboxyl-terminated butadieneacrylonitrile copolymers (CTBN) are two-phase thermosets. The network of the in situ formed rubber particles depends upon the curing mechanism of the resin. When a primary polyamine such as triethylene tetramine was used as curing agent, the network of the rubber phase was quite incomplete, whereas a perfect rubber network was formed with 2-ethyl-4-methyl imidazole as the curing agent.展开更多
文摘Based on the analysis of the main failures discovered in pavement on steel deck plate and the demanding service condition of the pavement on steel deck, high-temperature rutting test, low-temperature bending test and controlled stress flexural fatigue test are used to study the performance of asphalt mixtures modified by epoxy resin including high-temperature stability, low-temperature cracking-resistance, and fatigue cracking-resistance, which are served to evaluate the modification effect of epoxy resin of different contents. With the addition of epoxy resin, all the three performances are improved greatly. However, when the amount of epoxy resin added is over a certain value, the modification effect will be stable with no extra benefit detected. Finally, in terms of the properties of the three respects, 20%, 30%, 30% are given separately as the proposal adding contents.
基金supported by National Natural Science Foundation of China(No.51777076)the Self-topic Fund of State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources(No.LAPS2019-21)。
文摘In this paper,plasma fluorination is combined with plasma silicon deposition to achieve step gradient modification on an epoxy resin surface.The physicochemical characteristics of samples are investigated and the electrical performances measured.The obtained results show that compared with untreated and single treated samples,the samples treated by step gradient modification significantly improve the flashover performance.According to experiment and simulation,the mechanism explanations are summarized as follows.First,it is found that the step gradient conductivity can effectively optimize the electric field distribution of a needle-needle electrode.Then,step gradient modification suppresses the accumulation of surface charge at the triple junction and makes the charge distribution more uniform.Furthermore,it can accelerate the surface dissipation on a high electrical field region and control the dissipation rate on a low electrical field region.All these results can restrain surface discharge and increase the flashover voltage.The step gradient modification method proposed in this paper provides a new idea for improving the surface insulation performance.
文摘A novet toughened epoxy resin was obtained by using a precopotymer of epoxy resin and hydroxy-terminated butadiene-acrylonitrile copolymer(HTBN)and amine curing agent.The cured toughened resin has excellent mechanical properties due to the two-phase structure,which has been observed from SEM and TEM.
基金supported by the National Natural Science Foundation of China (Nos. 51172285, 51372277)the Fundamental Research Funds for the Central Universities (14CX02060A)the Natural Science Foundation of Shandong Province (ZR2011EL030)
文摘A bisphenol epoxy resin was used as modifier to increase the heat resistance of condensed poly-nuclear aromatic (COPNA) resin. The basic properties of COPNA resin and modified resin were characterized by Fourier transform infrared spectroscopy (FT-IR), nuclear magnetic resonance spectroscopy (1H-NMR), vapor pressure osmometry (VPO) and elemental analysis (EA). Average structural parameters of resins were calculated by the improved Brown-Ladner method, and heat resistance of resins was tested by thermogravimetric analysis (TGA). The chemical structure, mechanical properties and heat resistivity of the resin/graphite composites prepared with different resins were compared. The results show that the adhesive property and heat resistance of COPNA resin can be remarkably improved by addition of 5 wt.% epoxy resin. The reason is that the reactions between epoxy groups of epoxy resin and hydroxyl groups of COPNA resin improve the heat resistance and adhesive property of COPNA resin. Electric motor brushes with good mechanical properties and low electrical resistivity were successfully prepared by using the modified resin as binder.
文摘The synthesis and characterization of hyperbranched polyester (HBP) with different molecular weight are studied. The effect of HBP on the modification of epoxy resins cured with anhydride is mainly discussed. The characteristics of HBP and the morphologies of cured system are determined by nuclear magnetic resonance spectroscopy (NMR), gel permeation chromatography (GPC) and scanning electron microscope (SEM). The impact strength of cured system is detected and Fourier transform infrared (FTIR) measurements were used to pursue the curing process. The investigation shows that HBP can improve the toughness by forming copolymer networks between epoxy resins, HBP and anhydride. Moreover, when the molecular weight of HBP is 1342g/mol the toughening effect is the best, and the changes of toughness are small with the increase of molecular weight of HBP to 3500 g/mol.
基金Project (0447053) supported by the Natural Science Foundation of Guangxi Province, China Project(50473060) supported by the National Natural Science Foundation of China Project ([2004]20) supported by the Department of Education of Gunangxi Province, China
文摘A new kind of reactive toughening accelerator for epoxy resin, amine-teminated hyperbranched polymer (H2O-NMe2) was synthesized and characterized by FT-IR spectroscopy. Dynamic mechanical analysis (DMA) was used to study the glass transition temperature (Tg), loss factor (tanδ) and activation energy (Ea) by using multiplexing frequency. The results show that the Ea at glassy relaxation process of modified system is about 70-80 kJ/mol higher than that of unmodified system, and the high modulus and good thermal properties are still maintained.
基金Natural Science Foundation of Jiangsu Province,China(No.BK 20180244)Foundation of Qing Lan Project,ChinaOpening Project of Key Laboratory of Jiangsu Province for Silk Engineering,Soochow University,China(No.KJS2278)。
文摘A graphene oxide/nano-silica(GOS)hybrid was rapidly and easily synthesized using graphene oxide(GO)and nano-silica(nano-SiO_(2))as raw materials,and the synthesized GOS was used to improve the mechanical properties of epoxy resin(EP).The modified EP with different mass fractions of GOS(0,0.1%,0.2%,0.3%and 0.4%)were prepared and studied.The structure,thermal stability,mechanical properties,fracture toughness and failure morphology of the modified EP were analyzed.The results showed that the tensile strength of GOS modified EP increased from 40.6 MPa to 80.2 MPa compared with EP,the critical stress intensity factor of GOS modified EP increased by 65.9%from 0.82 MPa·m^(1/2)to 1.36 MPa·m^(1/2),indicating a significant enhancement in fracture toughness.In addition,failure morphology was observed by scanning electron microscopy(SEM)observation.The toughness mechanism of the modified EP was also discussed.Finally,the thermal stability of the modified EP was improved by the addition of GOS.Compared with neat EP,the initial thermal degradation temperature and glass transition temperature of GOS modified EP increased by 4.5℃and 10.3℃,respectively.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.21806129,51872238,51407134,and 51521065)the China Postdoctoral Science Foundation(Grant No.2016M590619)+3 种基金the Natural Science Foundation of Shandong Province,China(Grant No.ZR2016EEQ28)the State Key Laboratory of Electrical Insulation and Power Equipment,China(Grant No.EIPE14107)the Fundamental Research Funds for the Central Universities,China(Grant No.3102018zy045)the Natural Science Basic Research Plan in Shaanxi Province,China(Grant No.2017JQ5116)
文摘Epoxy-based composites containing montmorillonite(MMT)modified by silylation reaction withγ-aminopropyltriethoxysilane(γ-APTES)and 3-(glycidyloxypropyl)trimethoxysilane(GPTMS)are successfully prepared.The effects of filler loading and surface modification on the electrical and thermal properties of the epoxy/MMT composites are investigated.Compared with the pure epoxy resin,the epoxy/MMT composite,whether MMT is surface-treated or not,shows low dielectric permittivity,low dielectric loss,and enhanced dielectric strength.The MMT in the epoxy/MMT composite also influences the thermal properties of the composite by improving the thermal conductivity and stability.Surface functionalization of MMT not only conduces to the better dispersion of the nanoparticles,but also significantly affects the electric and thermal properties of the hybrid by influencing the interfaces between MMT and epoxy resin.Improved interfaces are good for enhancing the electric and thermal properties of nanocomposites.What is more,the MMT modified with GPTMS rather thanγ-APTES is found to have greater influence on improving the interface between the MMT filler and polymer matrices,thus resulting in lower dielectric loss,lower electric conductivity,higher breakdown strength,lower thermal conductivity,and higher thermal stability.
基金financial support of the National Natural Science Foundation of China(Grant No.52074332)express their gratitude to project ZR2020YQ36 supported by Shandong Provincial Science Fund for Excellent Young Scholars+1 种基金the Major Scientific and Technological Projects of CNPC under Grand ZD 2019-184-002-003CNPC Innovation Found(Grant No.2021DQ02-1006)。
文摘Hydraulic fracturing is a critical technology for the economic development of unconventional oil and gas reservoirs.The main factor influencing fracture propping and reservoir stimulation effect is proppant performance.The increasing depth of fractured oil and gas reservoirs is causing growing difficulty in hydraulic fracturing.Moreover,the migration of conventional proppants within the fracture is always limited due to small fracture width and rigid proppant structure.Thus,proppants with good transportation capacity and fracture propping effects are needed.First,a novel self-generated proppant based on toughened low-viscosity and low-density epoxy resin was developed to satisfy this demand.Then,proppant performances were evaluated.Low-viscosity and low-density epoxy resin was generated when the thiol-ene click chemical reaction product of eugenol and 1-thioglycerol reacts with the epichlorohydrin.Then,the resin was toughened with graphite particles to increase its compressive strength from50.8 to 72.1 MPa based on micro-cracking mechanism and crazing-nail anchor mechanism.The adduct of diethylene triamine and butyl glycidyl ether and the Si O2 nanoparticles were treated as the curing agent and emulsifier respectively to form the emulsion.The emulsion is transformed into solid particles of various sizes within a reservoir to prop the fracture.Evaluation shows good migration capacity of this self-generated proppant due to the low density of epoxy resin.
基金Sponsored by the National Natural Science Foundation of China (Grant No.52173011)。
文摘Core-shell toughening particles are structured composite particles consisting of generally two different components, one at the center as a rubbery elastic core and surrounding by the second as a glassy inelastic shell. The design, preparation, and application of core-shell polymer particles have been briefly reviewed. Morphological characteristics of the core-shell particles by transmission electron microscopy(TEM) and scanning electron microscopy(SEM) are focused. The vital factors that are useful to control core-shell morphology and toughening properties including core-shell monomer species, polymerization conditions, cross-linking reagents, synthetic method, and post-processing techniques are analyzed. Distinguished properties are mainly considered as the most desirable features that endow core-shell polymer particles with various applicabilities, particularly as effectively toughening components in brittle epoxy resin and polylactide that are substrate of copper clad laminate widely used in the modern electronic world and environmentally friendly materials that are useful as packaging films, disposable tableware, biomedical equipment, and new energy vehicles.
基金Project supported by the National Natural Science Foundation of China.
文摘Toughened epoxy resin with excellent properties was obtained by adding organic acid anhydride curing agent and hydroxy-terminated butadiene-acrylonitrile copolymer (HTBN), which is cheaper than CTBN. The anhydride reacts with both epoxy groups on epoxy resin and hydroxyl groups on HTBN. As a result the soft long chains of HTBN and the rigid chain of epoxy resin form one network, giving the resin toughness. Two-phase structure of the toughened resin was observed by SEM and TEM.
基金the Shanghai Aerospace Science and Technology Innovation Fund of China(No.SAST2019-122)。
文摘The thermal and dimensional stability of epoxy resin(EP)in-situ modified by cyanate ester(CE)and polydimethylsiloxane(PDMS)are investigated by means of experiments and numerical simulation.Thermal gravimetric analysis(TGA)and differential scanning calorimeter(DSC)are used to analyze the heat resistance of the modified EP.The dimensional stability is characterized by the volume shrinkage of the series PDMS/CE/EP obtained by the density method.The chemical structure of the PDMS/CE/EP is analyzed by Fourier transform infrared spectroscopy(FTIR).The results of TGA and DSC indicate that the thermal stability of PDMS/CE/EP decreases firstly and then increases with the increase in the amount of CE.The addition of PDMS shows a slight effect on the thermal stability.The 40%CE makes the blending system exhibit the lowest initial decomposition temperature,which reduces by 15.5%and 40.8%compared with pure EP and CE,respectively.The FTIR results suggested that the influence of CE on the thermal stability of the modified EP is mainly ascribed to the generation of oxazolidinone ring with low thermal stability and the increase in the triazine ring with high thermal stability.The volume shrinkage measurement results show that the introduction of CE and PDMS are both beneficial to the improvement of the dimensional stability of the blending systems.The in-situ addition of 80%CE shows the lowest volume shrinkage of6.11%.The thermal stress distribution of PDMS/CE/EP generated during the solidification process is simulated by the finite element analysis.The results suggested that the introduction of 80%CE into EP results in the lowest thermal stress in the blending system,which indicates that the system has the lowest volume shrinkage,which agrees well with the experimental results.
基金financially supported by the National Natural Science Foundation of China(Nos.52073038 and 51873027)the Fundamental Research Funds for the Central Universities(No.DUT22LAB605)。
文摘Toughening the petroleum-based epoxy resin blends with bio-based modifiers without compromising their modulus,mechanical strength,and other properties is still a big challenge in view of the sustainability.In this study,a bio-based liquid crystal epoxy resin(THMT-E P)with an s-triazine ring structure was utilized to modify a petroleum-based bisphenol A epoxy resin(E51)with 4,4'-diaminodiphenylsulfone(DDS)as a curing agent,and the blended systems were evaluated for their thermal stability,mechanical properties,and flame retardancy.The results showed that the impact strength of the blended system initially increased and then decreased with the increase in THMT-EP content,and it reached the a maximum value of 26.5 kJ/m^(2)when the THMT-EP content was 5%,which was 31.2%higher than that of E51/DDS.Notably,the flexural strength,modulus,and glass transition tem perature of the blended system were all simultaneously improved with the addition of THMT-EP.At the same time,the addition of THMT-EP enhanced the flame retardancy of the system by increasing the char yield at 700℃and decreasing the peak heat release rate and total heat release rate.This work paves the way for a more sustainable improvement in the comprehensive performance of epoxy resin.
基金from the Special Fund for the Program for Zhejiang Provincial Natural Science Foundation of China(LZ16C160001)National Key Research and Development Program(2017YFD0601105),the National Natural Science Foundation of China(Grant No.21806142)the Zhejiang Provincial Natural Science Foundation of China(Grant No.LY20B070002).
文摘It is essential to design economic and efficient tougheners to prepare high-performance epoxy resin;however,this has remained a huge challenge.Herein,an eco-friendly,low-cost,and facile-fabricated bio-based hyperbranched toughener,carboxylic acid-functionalized tannic acid(CATA),was successfully prepared and applicated to the preparation of solvent-free epoxy resins.The mechanical performance,morphology,structural characterization,and thermal characterization of toughened epoxy resin system were studied.The toughened epoxy resin system with only 1.0wt%CATA reached the highest impact strength,111%higher than the neat epoxy resin system.Notably,the tensile strength and elongation at break of toughened epoxy resin systems increased moderately with increasing CATA loading.Nonphase-separated hybrids with significant toughening effect were obtained.Additionally,the thermal stabilities of toughened epoxy resin systems decreased with increasing CATA loading.This study provides an eco-friendly,cost-effective,and facile approach for the preparation of high-performance,solvent-free epoxy resins with potential for practical applications in sealing integrated circuits and electrical devices fields.
基金Funded by the National High Technology Research and Development Program("863"Program)(No.2003AA305071)
文摘Perfluorinated alkyl silicone oil (PFASO) was successfully synthesized from N-ethyl-N- hydroxylethyl perfluorinated octane sulfonamide, succinie anhydride and amino silicone oil by esterification and amide reaction at moderate temperature in the presence of different catalysts. The chemical structure of the synthesized samples was characterized by Fourier transform infrared spectroscopy (FT-IR), the relative molecular mass(MM) and molecular mass distribution(MMD) of PFASO were tested by gel filtration chromatography(GFC). A commercial epoxy resin (DGEBA) was modified with PFASO, with the content of PFASO 1-5 phr. Thermo-gravimetric analysis (TGA), impact tests, scanning electron microscope (SEM) and water contact angle test were applied to provide accurate results on the thermal stability, toughness and hydrophobicity of PFASO/epoxy complex. The experimental results reveal that epoxy resins can be successfully modified by adding a small amount of as-synthesized modifiers via simple direct mixing, and verify that the as-synthesized modifier can improve the toughness and hydrophobicity of epoxy resin without sacrificing its thermal properties.
基金Sponsored by the National Natural Science Foundation of China
文摘Two kinds of tough ductile heatresisting thermoplastic, namely bisphenol A polysulfone (PSF) and polyethersulfone (PES) were used to toughen thermoset epoxy resin. A systematic study on the relationship between the molecular weight and the terminal group of the thermoplastic modifier and the fracture toughness of the modified resin was carried out. The morphology of PSF modified epoxy resin was surveyed. With the same kind of PSF the structure of the epoxy resin and the toughening effect of PSF was also investigated. The fractography of PSF, particle modified epoxy was examined in detail with SEM. The contribution of every possible energy absorption process has been discussed. Crack pinning mechanism seems to be the most important toughening mechanism for tough ductile thermoplastic PSF particle modified epoxy system.
基金Project(2003AA84ts04) supported by the National High-Tech Research and Development Program of China
文摘Diglycidyl 4,5-epoxy tetrahydro phthalate/methyl tetrahydrophthalic anhydride (TDE-85/MeTHPA) epoxy resin modified by polyurethane (PU) was prepared with 1,4-butanediol (1,4-BDO), trimethylol propane (TMP) and polyurethane prepolymer synthesized by polypropylene glycol and toluene diisocynate. Chemical reaction and curing mechanism of this system were discussed by incorporating the results of infra spectrum analysis. The results indicate that the epoxy polymeric network I is obtained by the curing reaction between TDE-85 and MeTHPA, while the PU polymeric network II is obtained by the chain-extended and crosslinking reaction between 1,4-BDO, TMP and polyurethane prepolymer(PUP). The graft chemical bonds are formed between polymer networks I and II that therefore increase the degree of blend and compatibility between epoxy polymer and PU.
基金The project is supported by Ford-China Research and Development Fund.
文摘Poly(butylene terephthalate)-b-poly(tetramethylene glycol) (PBT-b-PTMG) was used as rheology modifier for the epoxy resin. The segmental copolymer formed spherulites in the epoxy medium. This copolymer was very effective in endowing yield stresses to the liquid resin. The PTMG segment brought in a lowering of the dissolution temperature of the spherulites in the epoxy gel. The cured resin with PBT-b-PTMG as modifier was two-phase materials. The rheology modifier improved the mechanical properties of the cured resin as well. The flexible PTMG segments, however, were not in favour of the toughening effect of the modifier. This was attributed to the large domain size of the dispersed phase.
基金Supported by China Academy of Engineering Physics(Project 2014B05005)
文摘A series of solid-solid interfaces, consisting of ceramic-epoxy resin interface samples with a tip-plate electrode, were investigated by performing partial discharge tests and realtime electrical tree observations. A toughening agent was added to the epoxy resin at different ratios for comparison. The impact strength, differential scanning calorimetry (DSC) and dielectric properties of the cured compositions and ceramic were tested. The electric field strength at the tip was calculated based on Maxwell's theory. The test results show that the addition of a toughener can improve the impact strength of epoxy resin but it decreases the partial discharge inception voltage (PDIV) of the interface sample. At the same time, toughening leads to complex branches of the electrical tree. The simulation result suggests that this reduction of the PDIV cannot be explained by a change of permittivity due to the addition of a toughening agent. The microstructural change caused by toughening was considered to be the key factor for lower PDIV and complex electrical tree branches.
文摘Epoxy resins toughened with carboxyl-terminated butadieneacrylonitrile copolymers (CTBN) are two-phase thermosets. The network of the in situ formed rubber particles depends upon the curing mechanism of the resin. When a primary polyamine such as triethylene tetramine was used as curing agent, the network of the rubber phase was quite incomplete, whereas a perfect rubber network was formed with 2-ethyl-4-methyl imidazole as the curing agent.