期刊文献+
共找到753篇文章
< 1 2 38 >
每页显示 20 50 100
Influence of twist extrusion process on consolidation of pure aluminum powder in tubes by equal channel angular pressing and torsion 被引量:4
1
作者 王晓溪 何敏 +2 位作者 朱珍 薛克敏 李萍 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第7期2122-2129,共8页
In comparison with the conventional equal channel angular pressing(ECAP) process,a comprehensive study of influence of twist extrusion(TE) process on consolidating pure aluminum powder in tubes(PITs) by equal ch... In comparison with the conventional equal channel angular pressing(ECAP) process,a comprehensive study of influence of twist extrusion(TE) process on consolidating pure aluminum powder in tubes(PITs) by equal channel angular pressing and torsion(ECAPT) was conducted via three-dimensional(3D) finite element simulation,experimental investigation and theoretical analysis.Simulation results revealed that during the consolidation of aluminum powder particles by ECAPT,TE process played a significant role of back pressure.Due to the torsional shear and high hydrostatic pressure exerted by twist channel,both the magnitude and homogeneity of the effective strain were increased markedly.After one pass of ECAPT process using a square channel with an inner angle of 90° and a twist slope angle of 36.5° at 200℃,commercial pure aluminum powder particles were successfully consolidated to nearly full density.Simulation and experimental results showed good agreement.In the microstructure observations,grains were greatly refined.At the same time,porosities were effectively eliminated by shrinking in size and breaking into small ones.Microhardness test indicated that strain distribution of ECAPT-processed billet was more homogeneous with respect to the ECAP-processed one.All these improvements may be attributed to the extreme intense shear strain induced during ECAPT and the increase in self-diffusion coefficient of aluminum due to the back pressure exerted by TE process. 展开更多
关键词 aluminum powder equal channel angular pressing and torsion powder consolidation back pressure
下载PDF
Simple shear extrusion versus equal channel angular pressing:A comparative study on the microstructure and mechanical properties of an Mg alloy 被引量:2
2
作者 A.Rezaei R.Mahmudi +1 位作者 C.Cayron R.E.Logé 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第5期1769-1790,共22页
Two severe plastic deformation(SPD)techniques of simple shear extrusion(SSE)and equal channel angular pressing(ECAP)were employed to process an extruded Mg-6Gd-3Y-1.5Ag(wt%)alloy at 553 K for 1,2,4 and 6 passes.The mi... Two severe plastic deformation(SPD)techniques of simple shear extrusion(SSE)and equal channel angular pressing(ECAP)were employed to process an extruded Mg-6Gd-3Y-1.5Ag(wt%)alloy at 553 K for 1,2,4 and 6 passes.The microstructural evolutions were studied by electron back scattered diffraction(EBSD)analysis and transmission electron microscopy(TEM).The initial grain size of 7.5μm in the extruded alloy was reduced to about 1.3μm after 6 SPD passes.Discontinuous dynamic recrystallization was suggested to be operative in both SSE and ECAP,with also a potential contribution of continuous dynamic recrystallization at the early stages of deformation.The difference in the shear strain paths of the two SPD techniques caused different progression rate of dynamic recrystallization(DRX),so that the alloys processed by ECAP exhibited higher fractions of recrystallization and high angle grain boundaries(HAGBs).It was revealed that crystallographic texture was also significantly influenced by the difference in the strain paths of the two SPD methods,where dissimilar basal plane texture components were obtained.The compression tests,performed along extrusion direction(ED),indicated that the compressive yield stress(CYS)and ultimate compressive strength(UCS)of the alloys after both SEE and ECAP augmented continuously by increasing the number of passes.ECAP-processed alloys had lower values of CYS and UCS compared to their counterparts processed by SSE.This difference in the mechanical responses was attributed to the different configurations of basal planes with respect to the loading direction(ED)of each SPD technique. 展开更多
关键词 Mg-Gd-Y alloys Severe plastic deformation Simple shear extrusion equal channel angular pressing Dynamic recrystallization Mechanical properties
下载PDF
Ultrahigh strength and improved electrical conductivity in an aging strengthened copper alloy processed by combination of equal channel angular pressing and thermomechanical treatment
3
作者 WANG Xu LI Zhou +1 位作者 MENG Xiang-peng XIAO Zhu 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第6期1823-1837,共15页
In this paper,equal channel angular pressing and thermomechanical treatment was employed to improve the strength and electrical conductivity of an aging strengthened Cu-Ti-Cr-Mg alloy,and the microstructure and proper... In this paper,equal channel angular pressing and thermomechanical treatment was employed to improve the strength and electrical conductivity of an aging strengthened Cu-Ti-Cr-Mg alloy,and the microstructure and properties of the alloy were investigated in detail.The results showed that the samples deformed by the combination of cryogenic equal channel angular pressing(ECAP)and rolling had good comprehensive properties after aging at 400℃.The tensile strength of the peak-aged and over-aged samples was 1120 MPa and 940 MPa,with their corresponding electrical conductivity of 14.7%IACS and 22.1%IACS,respectively.ECAP and cryogenic rolling introduced high density dislocations,leading to the inhibition of the softening effects and refinement of the grains.After a long time aging at 400℃,the alloy exhibited ultra-high strength with obvious increasing electrical conductivity.The high strength was attributed to the synergistic effect of work hardening,grain refinement strengthening and precipitation strengthening.The precipitation of a large amount of Ti atoms from the matrix led to the high electrical conductivity of the over-aged sample. 展开更多
关键词 Cu-Ti alloy equal channel angular pressing ROLLING aging treatment high strength
下载PDF
Solid state recycling of Mg-Gd-Y-Zn-Zr alloy chips by isothermal sintering and equal channel angular pressing
4
作者 Yanbo Pei Hongjun Ma +1 位作者 Meng Yuan Bugang Teng 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第7期2725-2740,共16页
The Mg-7Gd-4Y-2Zn-0.5Zr alloy chips were successfully recycled through isothermal sintering and equal channel angular pressing(ECAP).The mechanical properties and microstructure evolution of samples during the recycli... The Mg-7Gd-4Y-2Zn-0.5Zr alloy chips were successfully recycled through isothermal sintering and equal channel angular pressing(ECAP).The mechanical properties and microstructure evolution of samples during the recycling process were studied in detail.The eutectic phases in the as-cast alloy transform into long period-stacking ordered(LPSO)phases after homogenization,which can improve the plasticity of the material.After isothermal sintering,the density of the sample is lower than that of the homogenized sample,and oxide films are formed adjacent to the bonding interface of the metal chips.Hence,the plasticity of the sintered sample is poor.Dense samples are fabricated after ECAP.Although the grains are not refined compared to the sintered sample,the microstructure becomes more uniform due to recrystallization.Fiber interdendritic LPSO phase and kinked 14H-LPSO phase are formed in the alloy due to the shear deformation during the ECAP process,which improves the strength and plasticity of the sample significantly.Furthermore,the basal texture is weakened due to the Bc route of the ECAP process,which can increase the Schmid factor of the basal slip system and improve the elongation of the sample.After 2 ECAP passes,the fully densified recycled billet shows superior mechanical properties with an ultimate tensile strength of 307.1 MPa and elongation of 11.1%. 展开更多
关键词 Mg-Gd-Y-Zn-Zr alloy Solid state recycling Microstructure evolution LPSO phase equal channel angular pressing
下载PDF
Microstructure and mechanical properties of Mg-Gd-Y-Zr alloy processed by equal channel angular pressing 被引量:7
5
作者 张帆 张可翔 +4 位作者 谭成文 于晓东 马红磊 王富耻 才鸿年 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第10期2140-2146,共7页
Microstructure evolution and texture development and their effects on mechanical properties of a Mg-Gd-Y-Zr alloy during equal channel angular pressing(ECAP) were investigated.It is found that the microstructure is ... Microstructure evolution and texture development and their effects on mechanical properties of a Mg-Gd-Y-Zr alloy during equal channel angular pressing(ECAP) were investigated.It is found that the microstructure is still inhomogeneous after four passes,and two zones,namely the fine grain zone(FGZ) and the coarse grain zone(CGZ) are formed.The grain refinement occurs mainly by particle-stimulated nucleation(PSN) mechanism,which led to a more random texture after four passes of ECAP.In the ECAP-processed alloy,the strength did not increase while the ductility was enhanced dramatically compared with the as-received condition.The change of ductility of this alloy was discussed in terms of texture and second phase particles. 展开更多
关键词 Mg-Gd-Y-Zr magnesium alloy equal channel angular pressing(ECAP) grain size TEXTURE second phase particles mechanical properties
下载PDF
Equal channel angular extrusion of NiTi shape memory alloy tube 被引量:3
6
作者 江树勇 赵亚楠 +2 位作者 张艳秋 唐明 李春峰 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第7期2021-2028,共8页
As a new attempt, equal channel angular extrusion (ECAE) of nickel-titanium shape memory alloy (NiTi SMA) tube was investigated by means of process experiment, finite element method (FEM) and microscopy. NiTi SM... As a new attempt, equal channel angular extrusion (ECAE) of nickel-titanium shape memory alloy (NiTi SMA) tube was investigated by means of process experiment, finite element method (FEM) and microscopy. NiTi SMA tube with the steel core in it was inserted into the steel can during ECAE of NiTi SMA tube. Based on rigid-viscoplastic FEM, multiple coupled boundary conditions and multiple constitutive models were used for finite element simulation of ECAE of NiTi SMA tube, where the effective stress field, the effective strain field and the velocity field were obtained. Finite element simulation results are in good accordance with the experimental ones. Finite element simulation results reveal that the velocity field shows the minimum value in the corner of NiTi SMA tube, where severe shear deformation occurs. Microstructural observation results reveal that severe plastic deformation leads to a certain grain orientation as well as occurrence of substructures in the grain interior and dynamic recovery occurs during ECAE of NiTi SMA tube. ECAE of NiTi SMA tube provides a new approach to manufacturing ultrafine-grained NiTi SMA tube. 展开更多
关键词 NiTi tube shape memory alloy equal channel angular extrusion severe plastic deformation finite element method
下载PDF
Uniaxial compressive behavior of equal channel angular pressing Al at wide temperature and strain rate range 被引量:1
7
作者 汤忠斌 索涛 +3 位作者 张部声 李玉龙 赵峰 范学领 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第8期2447-2452,共6页
Uniaxial compressive experiments of ultrafine-grained Al fabricated by equal channel angular pressing(ECAP) method were performed at wide temperature and strain rate range. The influence of temperature on flow stress,... Uniaxial compressive experiments of ultrafine-grained Al fabricated by equal channel angular pressing(ECAP) method were performed at wide temperature and strain rate range. The influence of temperature on flow stress, strain hardening rate and strain rate sensitivity was investigated experimentally. The results show that both the effect of temperature on flow stress and its strain rate sensitivity of ECAPed Al is much larger than those of the coarse-grained Al. The temperature sensitivity of ultrafine-grained Al is comparatively weaker than that of the coarse-grained Al. Based on the experimental results, the apparent activation volume was estimated at different temperatures and strain rates. The forest dislocation interactions is the dominant thermally activated mechanism for ECAPed Al compressed at quasi-static strain rates, while the viscous drag plays an important role at high strain rates. 展开更多
关键词 ultrafine-grained materials equal channel angular pressing AL mechanical behavior strain rate sensitivity temperature dependence activation volume
下载PDF
Refinement and consolidation of pure Al particles by equal channel angular pressing and torsion 被引量:1
8
作者 李萍 薛克敏 +1 位作者 王晓溪 钱陈豪 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第5期1289-1294,共6页
Consolidation of pure Alpowder was conducted at 200 ℃ by equal channel angular pressing and torsion (ECAPT) method. The grain refinement and consolidation behavior were deeply investigated by scan electronic micros... Consolidation of pure Alpowder was conducted at 200 ℃ by equal channel angular pressing and torsion (ECAPT) method. The grain refinement and consolidation behavior were deeply investigated by scan electronic microscopy (SEM) and transmission electronic microscopy (TEM). The density, hardness and room temperature compression properties of the deformed samples were measured. The experiment results show that ECAPT is an effective method of consolidating powders at relatively low temperatures. Pure A1 particles are successfully consolidated into dense bulk material after 4 passes of ECAPT at 200 ℃. The consolidated material possesses fine grain structure and excellent mechanical properties. The refinement and consolidation mechanisms were analyzed. ECAPT is a promising method to produce the high-performance bulk materials from particles. 展开更多
关键词 REFINEMENT CONSOLIDATION equal channel angular pressing and torsion Al powder
下载PDF
Effect of processing route on grain refinement in pure copper processed by equal channel angular extrusion 被引量:2
9
作者 唐超兰 李豪 李赛毅 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第7期1736-1744,共9页
An experimental study of the microstructures in pure copper billets processed by 8 passes of equal channel angular extrusion (ECAE) via an extended range of processing routes with a 90° die is carried out. Each... An experimental study of the microstructures in pure copper billets processed by 8 passes of equal channel angular extrusion (ECAE) via an extended range of processing routes with a 90° die is carried out. Each processing route is defined according to the inter-pass billet rotation angle (χ), which varies from 0° to 180°. According to the generation of high-angle boundaries and reduction of grain size by electron backscatter diffraction (EBSD) measurements, the grain refinement is found to be most efficient for route with χ=90°and least efficient with χ=180°, among the seven routes studied. This trend is supported by supplementary transmission electron microscopy (TEM) measurements. Comparison of the EBSD and TEM data reveals the importance of considering the non-equiaxity of grain structures in quantitative assessment of microstructural differences in ECAE-processed materials. 展开更多
关键词 pure copper equal channel angular extrusion severe plastic deformation strain path grain refinement
下载PDF
Application of crystal plasticity modeling in equal channel angular extrusion 被引量:4
10
作者 李赛毅 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第1期170-179,共10页
Some applications of crystal plasticity modeling in equal channel angular extrusion(ECAE) of face-centered cubic metals were highlighted.The results show that such simulations can elucidate the dependency of grain r... Some applications of crystal plasticity modeling in equal channel angular extrusion(ECAE) of face-centered cubic metals were highlighted.The results show that such simulations can elucidate the dependency of grain refinement efficiency on processing route and the directionality of substructure development,which cannot be explained by theories that consider only the macroscopic deformation behavior.They can also capture satisfactorily the orientation stability and texture evolution under various processing conditions.It is demonstrated that crystal plasticity models are useful tools in exploring the crystallographic nature of grain deformation and associated behavior that are overlooked or sometimes erroneously interpreted by existing phenomenological theories. 展开更多
关键词 severe plastic deformation equal channel angular extrusion TEXTURE crystal plasticity strain path grain refinement
下载PDF
Deformation Behavior and Microstructure Evolution during Equal Channel Angular Pressing of Pure Aluminum
11
作者 XU Shubo WANG Hanlin +2 位作者 LIU Peng JING Cainian REN Guocheng 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2022年第1期130-135,共6页
The deformation behavior of equal channel angular pressing(ECAP)was discussed by using plasticity method.The node mapping method is employed to realize the analysis of multi-pass ECAP by using three-dimensional FEM me... The deformation behavior of equal channel angular pressing(ECAP)was discussed by using plasticity method.The node mapping method is employed to realize the analysis of multi-pass ECAP by using three-dimensional FEM methods for pure aluminum.The single-pass ECAP is a non-uniform shear deformation process in the cross-section of the workpiece.The uniform deformation processing routes are obtained during multi-pass ECAP process.In addition,the density of dislocations and defects of crystal lattice are also largely changed for different processing routes.The grain microstructure is gradually refined with the increase of the pressing passes.The grains and their distribution obtained by route Bc are more useful for producing the material with high angle grain boundaries.The grain microstructure of the cross section of the pressed material decreases with the increase of strain,and some grains exhibit transformed grain boundary(PTB)fringes.The dislocation density in the grain decreases,and the grain boundary presents equiaxed distribution. 展开更多
关键词 severe plastic deformation equal channel angular pressing/extrusion finite element analysis pure aluminum MICROSTRUCTURE
下载PDF
Effect of annealing temperature on martensitic transformation of Ti_(49.2)Ni_(50.8) alloy processed by equal channel angular pressing 被引量:2
12
作者 张殿涛 郭宝 +5 位作者 佟运祥 田兵 李莉 郑玉峰 Dmitry-V GUNDEROV Ruslan-Z VALIEV 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第2期448-455,共8页
The effect of annealing temperature on the martensitic transformation of a Ti49.2Ni50.8 alloy processed by equal channel angular pressing (ECAP) was investigated by X-ray diffraction (XRD), transmission electron m... The effect of annealing temperature on the martensitic transformation of a Ti49.2Ni50.8 alloy processed by equal channel angular pressing (ECAP) was investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM) and differential scanning calorimetry (DSC). The as-ECAP processed and subsequently annealed Ti49.2Ni50.8 alloys consist of B2 parent phase, Ti4Ni2O phase and B19′ martensite at room temperature. Upon cooling, all samples show B2→R→B19′ two-stage transformation. Upon heating, when the annealing temperature is less than 400℃, the samples show B19′→R→B2 two-stage transformation; when the annealing temperature is higher than 500 ℃, the samples show B19′→B2 single-stage transformation. The B2-R transformation is characterized by wide interval due to the dislocations introduced during ECAP. 展开更多
关键词 YiNi alloy equal channel angular pressing martensitic transformation annealing temperature
下载PDF
EFFECT OF EQUAL-CHANNEL ANGULAR PRESSING ON STRUCTURE OF Al ALLOY 2024 被引量:12
13
作者 Liu, Zuyan Liang, Guoxian +1 位作者 Wang, Erde Wang, Zhongren 《中国有色金属学会会刊:英文版》 EI CSCD 1997年第2期161-163,共3页
EFFECTOFEQUALCHANNELANGULARPRESSINGONSTRUCTUREOFAlALLOY2024①LiuZuyan,LiangGuoxian,WangErde,WangZhongrenScho... EFFECTOFEQUALCHANNELANGULARPRESSINGONSTRUCTUREOFAlALLOY2024①LiuZuyan,LiangGuoxian,WangErde,WangZhongrenSchoolofMaterialsScie... 展开更多
关键词 equal channel angular pressing large plastic STRAIN equivalent TRUE STRAIN STRUCTURE
下载PDF
Microstructure evolution of processed Mg-Al-Zn alloy by equal channel angular extrusion in semi-solid isothermal treatment 被引量:9
14
作者 姜巨福 罗守靖 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2006年第6期1313-1319,共7页
Microstructure evolution of processed Mg-Al-Zn alloy by equal channel angularextrusion(ECAE) in semi-solid isothermal treatment was investigated. The results show that withincreasing semi-solid isothermal treatment te... Microstructure evolution of processed Mg-Al-Zn alloy by equal channel angularextrusion(ECAE) in semi-solid isothermal treatment was investigated. The results show that withincreasing semi-solid isothermal treatment temperature, the a phase solid grain size of processedMg-Al-Zn alloy by ECAE increases firstly due to coarsening of a phase solid grains, then decreasesdue to melting of a phase solid grains. With the increase of extrusion passes during ECAE, the aphase solid grain size in the following semi-solid isothermal treatment decreases. The a phase solidgrain size of processed Mg-Al-Zn alloy by ECAE under route B_C is the smallest, while the a phasesolid grain size of processed material by ECAE under route A is the largest. The primary mechanismof spheroid formation depends on the melting of recrystallizing boundaries and diffusion of soluteatoms in the semi-solid state. 展开更多
关键词 magnesium alloy Mg-Al-Zn alloy equal channel angular extrusion isothermaltreatment semi-solid processing
下载PDF
Reducing the tension-compression yield asymmetry of extruded Mg-Zn-Ca alloy via equal channel angular pressing 被引量:11
15
作者 L.B.Tong M.Y.Zheng +4 位作者 S.Kamado D.P.Zhang J.Meng L.R.Cheng H.J.Zhang 《Journal of Magnesium and Alloys》 SCIE EI CAS 2015年第4期302-308,共7页
The influence of equal channel angular pressing on the tension-compression yield asymmetry of extruded Mg-5.3 Zn-0.6 Ca(weight percent)alloy has been investigated.The microstructure was obviously refined by the large ... The influence of equal channel angular pressing on the tension-compression yield asymmetry of extruded Mg-5.3 Zn-0.6 Ca(weight percent)alloy has been investigated.The microstructure was obviously refined by the large strain during the equal channel angular pressing,accompanied with very fine Ca_(2)Mg_(6)Zn_(3) phases with average diameter of 70 nm.The weak tension-compression yield asymmetry after equal channel angular pressing is mainly attributed to the reduced volume fraction of extension twinning during the compression,because the slope(k)of twinning in Hall-Petch relationship is higher than that of dislocation slip,and the twinning deformation is difficult to take place with decreasing grain size.The basal slip is more active in the alloy after equal channel angular pressing,due to the non-basal texture components,which hinders the twinning activation and reduces the yield asymmetry.Furthermore,the presence of fine precipitate restricts the twinning activation,which also contributes to the reduction of yield asymmetry. 展开更多
关键词 Mg-Zn-Ca alloy Yield asymmetry equal channel angular pressing TWINNING PRECIPITATES
下载PDF
Effect of Y content and equal channel angular pressing on the microstructure, texture and mechanical property of extruded Mg-Y alloys 被引量:10
16
作者 W.Yang G.F.Quan +4 位作者 B.Ji Y.F.Wan H.Zhou J.Zheng D.D.Yin 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2022年第1期210-224,共15页
The microstructure, texture and mechanical property evolution of the extruded Mg-x Y(x = 1, 5 wt.%) alloys during equal channel angular pressing(ECAP) were systematically investigated using an optical microscope, elec... The microstructure, texture and mechanical property evolution of the extruded Mg-x Y(x = 1, 5 wt.%) alloys during equal channel angular pressing(ECAP) were systematically investigated using an optical microscope, electron backscatter diffraction(EBSD) and uniaxial tensile test. The Mg-Y alloys exhibited a weakened basal texture before the ECAP, and the texture was further weakened with the max basal poles dispersed along ~45° between the extrusion direction and the transverse direction after the ECAP. The Mg-5 Y alloys always exhibited a finer grain size comparing to that of Mg-1 Y for the same ECAP process. With a proper ECAP process, both the strength and elongation of Mg-5 Y alloy could be improved simultaneously after the ECAP, i.e., the yield strength(273.9 ± 1.2 MPa), ultimate strength(306.4 ± 3.0 MPa),and elongation(23.9 ± 1.0%) were increased by 10%, 6%, and 72%, respectively, comparing to that before the ECAP. This was considered to be arose from the combined effects of grain refinement, significant improved microstructure homogeneity and solid solution hardening.In addition, it was found that Mg-Y alloy with better comprehensive properties could be obtained by the decreasing-temperature ECAP processes. The yield strength-grain size relationship could be well described by the Hall-Petch relation for all the ECAPed Mg-Y alloys,which was consistent with that the texture changes did not significantly affect the average Schmid factors of basal, prismatic and pyramidal slips for both Mg-Y alloys. 展开更多
关键词 Mg-RE alloy equal channel angular pressing TEXTURE Mechanical property
下载PDF
Die structure optimization of equal channel angular extrusion for AZ31 magnesium alloy based on finite element method 被引量:9
17
作者 胡红军 张丁非 潘复生 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第2期259-266,共8页
Three-dimensional(3D) geometric models with different comer angles (90° and 120°) and with or without inner round fillets in the bottom die were designed. Some important process parameters were regarded ... Three-dimensional(3D) geometric models with different comer angles (90° and 120°) and with or without inner round fillets in the bottom die were designed. Some important process parameters were regarded as the calculation conditions used in DEFORMTM-3D software, such as stress--strain data of compression test for AZ31 magnesium, temperatures of die and billet, and friction coefficient. Influence of friction coefficient on deformation process was discussed. The results show that reasonable lubrication condition is important to plastic deformation. The change characteristics for distributions of effective stress and strain during an equal channel angular extrusion (ECAE) process with inner angle of 90° and without fillets at outer comer were described. Inhomogeneity index (C) was defined and deformation heterogeneity of ECAE was analyzed from the simulation and experiment results. The deformation homogeneity caused by fillets at outer comer increased compared with the die without fillets. The cumulated maximum strains decrease with increasing the fillets of outer comer in ECAE die and the inner comer angle. The analysis results show that better structures of ECAE die including appropriate outer comer fillet and the inner comer angle of 90° for the die can improve the strain and ensure plastic deformation homogenization to a certain extent. The required extrusion force drops with increasing the fillet made at outer comer in ECAE die. It is demonstrated that the prediction results are in good agreement with experiments and the theoretical calculation and the research conclusions in literatures. 展开更多
关键词 AZ31 magnesium alloy equal channel angular extrusion finite element method outer comer angle deformation inhomogeneity
下载PDF
Microstructure and texture evolution of Al-7075 alloy processed by equal channel angular pressing 被引量:7
18
作者 M.H.SHAERI M.SHAERI +2 位作者 M.T.SALEHI S.H.SEYYEDEIN F.DJAVANROODI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第5期1367-1375,共9页
Equal channel angular pressing is an effective technique to control the texture and microstructure of metals and alloys. Texture and microstructure of an Al-7075 alloy subjected to repetitive equal channel angular pre... Equal channel angular pressing is an effective technique to control the texture and microstructure of metals and alloys. Texture and microstructure of an Al-7075 alloy subjected to repetitive equal channel angular pressing through a 90° die were evaluated by X-ray diffractometer and orientation imaging microscopy. It is observed that processing through different routes leads to different types of textures, in both qualitative and quantitative senses. The texture calculation by Labotex software reveals that texture strengthens after the first pass and weakens by progressing ECAP process up to 4 passes. Microstructure investigations show that after 4 passes of equal channel angular pressing via routes BC and A, very fine grains with average grain size of about 700 nm and 1 μm appear, respectively, and most of the grains evolve into arrays of high angle boundaries. The effects of covering the Al-7075 billets with copper tube on texture and microstructure were also studied. 展开更多
关键词 equal channel angular pressing crystallographic texture aluminum alloy ultra-fine grain
下载PDF
Microstructure and mechanical property of a high-strength Mg-10Gd-6Y-1.5Zn-0.5Zr alloy prepared by multi-pass equal channel angular pressing 被引量:12
19
作者 Huan Liu He Huang +4 位作者 Xiaowei Yang Cheng Li Jingli Yan Jinghua Jiang Aibin Ma 《Journal of Magnesium and Alloys》 SCIE EI CAS 2017年第2期231-237,共7页
In this work,a high-strength Mg–10Gd–6Y–1.5Zn–0.5Zr(wt.%)alloy was fabricated by successive multi-pass equal channel angular pressing(ECAP).The microstructure and mechanical property of as-cast and ECAP alloys wer... In this work,a high-strength Mg–10Gd–6Y–1.5Zn–0.5Zr(wt.%)alloy was fabricated by successive multi-pass equal channel angular pressing(ECAP).The microstructure and mechanical property of as-cast and ECAP alloys were systematically researched by X-ray diffractometer,scanning electron microscopy,transmission electron microscopy and compression test.The results show that the microstructure of as-cast alloy consists ofα-Mg grains,Mg24Y5 networks,18R blocks,fine 14H lamellas,and fewY-rich particles.After 8 passes ECAP,dynamic recrystallization ofα-Mg is developed and their average grain size decreases to about 1μm.The network Mg_(24)Y_(5) phase at grain boundaries is broken into small particles with average diameter lower than 0.5μm.Moreover,18R blocks are kinked and delaminated,or broken into small particles and blended with Mg24Y5 particles.14H lamellas grow gradually or are dynamically precipitated within certainα-Mg grains.Compression tests indicate that 8p ECAP alloy exhibits excellent mechanical property with compressive strength of 537 MPa and fracture strain of 17.0%.The significant improvement for both strength and ductility of deformed alloy could be ascribed to DRX grains,refined Mg24Y5 particles,18R kinking and dynamical precipitation of 14H. 展开更多
关键词 Mg-10Gd-6Y-1.5Zn-0.5Zr LPSO phase equal channel angular pressing Compression strength Fracture strain
下载PDF
The effect of Equal Channel Angular Pressing process on the microstructure of AZ31 Mg alloy strip shaped specimens 被引量:12
20
作者 S.M.Arab A.Akbarzadeh 《Journal of Magnesium and Alloys》 SCIE EI CAS 2013年第2期145-149,共5页
Equal Channel Angular Pressing(ECAP)is one of the most applicable Sever Plastic Deformation(SPD)processes which leads to strength and ductility improvement through the grain refining and development of a suitable text... Equal Channel Angular Pressing(ECAP)is one of the most applicable Sever Plastic Deformation(SPD)processes which leads to strength and ductility improvement through the grain refining and development of a suitable texture.In this study,after designing and manufacturing a suitable die,4 pass ECAP process at route C is done on strip shaped specimens of AZ31 magnesium alloy in order to achieve desirable microstructural and mechanical properties.Microstructure then got studied through the optical microscopy.Results show that mean grain size is decreased and grain size distribution got close to normal distribution state by increasing the pass number.However,the grain size is reduced by increasing of ECAP temperature. 展开更多
关键词 equal channel angular pressing(ECAP) AZ31 Mg Alloy MICROSTRUCTURE
下载PDF
上一页 1 2 38 下一页 到第
使用帮助 返回顶部