Software synchronous sampling is widely employed in periodic signal measurement, but measurement errors occur very commonly. This paper analyses the cause of the errors, deduces the mathematical model for the measure...Software synchronous sampling is widely employed in periodic signal measurement, but measurement errors occur very commonly. This paper analyses the cause of the errors, deduces the mathematical model for the measurement errors in measuring RMS voltage, RMS current and active power using the software synchronous sampling method. Some measures to reduce the errors are put forward by simulating.展开更多
Synchronous sampling is very essential in underwater multilinear array seismic exploration system in which every acquisition node(AN)samples analog signals by its own analog-digital converter(ADC).Aiming at the proble...Synchronous sampling is very essential in underwater multilinear array seismic exploration system in which every acquisition node(AN)samples analog signals by its own analog-digital converter(ADC).Aiming at the problems of complex synchronous sampling method and long locking time after varying sampling rate in traditional underwater seismic exploration system,an improved synchronous sampling model based on the master-slave synchronous model and local clock asynchronous drive with non phase locked loop(PLL)is built,and a high-precision synchronous sampling method is proposed,which combines the short-term stability of local asynchronous driving clock with the master-slave synchronous calibration of local sampling clock.Based on the improved synchronous sampling model,the influence of clock stability,transmission delay and phase jitter on synchronous sampling error is analyzed,and a high-precision calibration method of synchronous sampling error based on step-by-step compensation of transmission delay is proposed.The model and method effectively realize the immunity of phase jitter on synchronous sampling error in principle,and compensate the influence of signal transmission delay on synchronous sampling error.At the same time,it greatly reduces the complexity of software and hardware implementation of synchronous sampling,and solves the problem of long locking time after changing the sampling rate in traditional methods.The experimental system of synchronous sampling for dual linear array is built,and the synchronous sampling accuracy is better than 5 ns.展开更多
In order to eliminate the influence of frequency change on real-time voltage acquisition,a low-cost solution of voltage monitoring was proposed using the multi-channel DMA synchronous frequency trace-sampling techniqu...In order to eliminate the influence of frequency change on real-time voltage acquisition,a low-cost solution of voltage monitoring was proposed using the multi-channel DMA synchronous frequency trace-sampling technique.In-chip resources of the designed voltage monitor were fully utilized in hardware design to reduce external devices.The MQX RTOS was used to perform the functional tasks flexibly and efficiently;especially the Ethernet communication applications and USB device connection were realized using its TCP/IP protocol stack and USB driver.In addition,to ensure the safety of electrical records,data statistics and alarm information management were also implemented through the management of the storage in FLASH.The test results show that the voltage monitor designed in this paper has the advantages of accurate measurement,strong resistance to frequency interference and low cost,and can be widely applied in the field of voltage monitoring in distribution networks.展开更多
In this paper, we study the exponential synchronization of chaotic Lur'e systems with time-varying delays via sampled-data control by using sector nonlinearties. In order to make full use of information about samplin...In this paper, we study the exponential synchronization of chaotic Lur'e systems with time-varying delays via sampled-data control by using sector nonlinearties. In order to make full use of information about sampling intervals and interval time-varying delays, new Lyapunov-Krasovskii functionals with triple integral terms are introduced. Based on the convex combination technique, two kinds of synchronization criteria are derived in terms of linear matrix inequal- ities, which can be efficiently solved via standard numerical software. Finally, three numerical examples are provided to demonstrate the less conservatism and effectiveness of the proposed results.展开更多
In this paper, the problem of exponential synchronization of complex dynamical networks with Markovian jumping parameters using sampled-data and Mode-dependent probabilistic time-varying coupling delays is investigate...In this paper, the problem of exponential synchronization of complex dynamical networks with Markovian jumping parameters using sampled-data and Mode-dependent probabilistic time-varying coupling delays is investigated. The sam- pling period is assumed to be time-varying and bounded. The information of probability distribution of the time-varying delay is considered and transformed into parameter matrices of the transferred complex dynamical network model. Based on the condition, the design method of the desired sampled data controller is proposed. By constructing a new Lyapunov functional with triple integral terms, delay-distribution-dependent exponential synchronization criteria are derived in the form of linear matrix inequalities. Finally, two numerical examples are given to illustrate the effectiveness of the proposed methods.展开更多
In this letter, a distributed protocol for sampled-data synchronization of coupled harmonic oscillators with controller failure and communication delays is proposed, and a brief procedure of convergence analysis for s...In this letter, a distributed protocol for sampled-data synchronization of coupled harmonic oscillators with controller failure and communication delays is proposed, and a brief procedure of convergence analysis for such algorithm over undirected connected graphs is provided. Furthermore, a simple yet generic criterion is also presented to guarantee synchronized oscillatory motions in coupled harmonic oscillators. Subsequently, the simulation results are worked out to demonstrate the efficiency and feasibility of the theoretical results.展开更多
We investigate the stochastic asymptotical synchronization of chaotic Markovian jumping fuzzy cellular neural networks (MJFCNNs) with discrete, unbounded distributed delays, and the Wiener process based on sampled-d...We investigate the stochastic asymptotical synchronization of chaotic Markovian jumping fuzzy cellular neural networks (MJFCNNs) with discrete, unbounded distributed delays, and the Wiener process based on sampled-data control using the linear matrix inequality (LMI) approach. The Lyapunov–Krasovskii functional combined with the input delay approach as well as the free-weighting matrix approach is employed to derive several sufficient criteria in terms of LMIs to ensure that the delayed MJFCNNs with the Wiener process is stochastic asymptotical synchronous. Restrictions (e.g., time derivative is smaller than one) are removed to obtain a proposed sampled-data controller. Finally, a numerical example is provided to demonstrate the reliability of the derived results.展开更多
This paper is concerned with the synchronization of delayed neural networks via sampled-data control. A new technique, namely, the free-matrix-based time-dependent discontinuous Lyapunov functional approach, is adopte...This paper is concerned with the synchronization of delayed neural networks via sampled-data control. A new technique, namely, the free-matrix-based time-dependent discontinuous Lyapunov functional approach, is adopted in constructing the Lyapunov functional, which takes advantage of the sampling characteristic of sawtooth input delay. Based on this discontinuous Lyapunov functional, some less conservative synchronization criteria are established to ensure that the slave system is synchronous with the master system. The desired sampled-data controller can be obtained through the use of the linear matrix inequality(LMI) technique. Finally, two numerical examples are provided to demonstrate the effectiveness and the improvements of the proposed methods.展开更多
In this paper the fault tolerant synchronization of two chaotic systems based on fuzzy model and sample data is investigated. The problem of fault tolerant synchronization is formulated to study the global asymptotica...In this paper the fault tolerant synchronization of two chaotic systems based on fuzzy model and sample data is investigated. The problem of fault tolerant synchronization is formulated to study the global asymptotical stability of the error system with the fuzzy sampled-data controller which contains a state feedback controller and a fault compensator. The synchronization can be achieved no matter whether the fault occurs or not. To investigate the stability of the error system and facilitate the design of the fuzzy sampled-data controller, a Takagi Sugeno (T-S) fuzzy model is employed to represent the chaotic system dynamics. To acquire good performance and produce a less conservative analysis result, a new parameter-dependent Lyapunov-Krasovksii functional and a relaxed stabilization technique are considered. The stability conditions based on linear matrix inequality are obtained to achieve the fault tolerant synchronization of the chaotic systems. Finally, a numerical simulation is shown to verify the results.展开更多
We consider the impulsive effect on the exponential synchronization of neural networks with leakage delay under the sampled-data feedback control. We use an appropriate Lyapunov-Krasovskii functional combined with the...We consider the impulsive effect on the exponential synchronization of neural networks with leakage delay under the sampled-data feedback control. We use an appropriate Lyapunov-Krasovskii functional combined with the input delay approach and some inequality techniques to derive sufficient conditions that ensure the exponential synchronization of the delayed neural network. The conditions are formulated in terms of the leakage delay, the sampling period, and the exponential convergence rate. Numerical examples are given to demonstrate the usefulness and the effectiveness of the results.展开更多
We deal with the problem of pinning sampled-data synchronization for a complex network with probabilistic time-varying coupling delay. The sampling period considered here is assumed to be less than a given bound. With...We deal with the problem of pinning sampled-data synchronization for a complex network with probabilistic time-varying coupling delay. The sampling period considered here is assumed to be less than a given bound. Without using the Kronecker product, a new synchronization error system is constructed by using the property of the random variable and input delay approach. Based on the Lyapunov theory, a delay-dependent pinning sampled-data synchronization criterion is derived in terms of linear matrix inequalities (LMIs) that can be solved effectively by using MATLAB LMI toolbox. Numerical examples are provided to demonstrate the effectiveness of the proposed scheme.展开更多
可编程约瑟夫森电压基准(programmable Josephson voltage standard,PJVS)已被初步应用于谐波信号的测量与分析,在克服过渡过程和吉布斯效应对测量结果的影响后,仍存在无法避免的非同步采样问题,这会在测量结果中引入较大误差,且影响信...可编程约瑟夫森电压基准(programmable Josephson voltage standard,PJVS)已被初步应用于谐波信号的测量与分析,在克服过渡过程和吉布斯效应对测量结果的影响后,仍存在无法避免的非同步采样问题,这会在测量结果中引入较大误差,且影响信号的分析频谱。针对上述问题,提出了基于准同步采样的二次加权傅里叶变换方法,所提方法将准同步采样改进后与加权傅里叶变换结合,通过对原始信号进行两次不同的加权和分步修正,实现了对谐波信号的准确测量。经实验验证,使用该方法对谐波电压测量分析,测量标准偏差可达10^(-7)量级。展开更多
A technique for real-time synchronous integration of radar and raingauge measurements based on the concept of the quasi same-rain-volume sampling(QSVS) is presented.Because of the temporal and spatial discrepancies ...A technique for real-time synchronous integration of radar and raingauge measurements based on the concept of the quasi same-rain-volume sampling(QSVS) is presented.Because of the temporal and spatial discrepancies and resolution differences,the integration of radar measurements with raingauge observations has long been a difficult task.Observations indicate that there exists a correlation that conforms to the power law between hourly accumulated raingauge measurement(Q_G) and detected radar echo(Z_(OH)) over the raingauge.On the basis of this,a concept of the QSVS and five direct correspondent formulas of radar and raingauge samples are built up,aiming to eliminate the temporal and spatial discrepancies.A convenient and practical sampling method—the time integral vertical synchronous sampling(TIVS) is proposed and the Z_(OH)—Q_G relationship is studied.It is significant that under the fixed exponent,the coefficient A_B or A_M varies flexibly in accordance with the temporal and spatial variability of natural precipitation,having the function of synchronously integrating the Z—R conversion and the gauge adjustment into a single equation,and thus the precipitation estimation errors caused by detecting resolution differences between radar and raingauge can be obviously mitigated.The real-time synchronous integration technique using the Z_(OH)—Q_G relationship to estimate the ground hourly rainfall accumulation is called the radar-gauge synchronous integration method(RASIM).The experiments of two cases show that the accuracy of estimated surface hourly rainfall accumulation within 230 km is about 90%,and the average relative error for the point estimation over the whole process is about 20%. Through the detailed analysis of the applicability of TIVS in three environmental fields with various wind drifts,the physical essence of TIVS is explored:it is an approximate QSVS.By analyzing the data pairs of radar and raingauge,an effective quality-control procedure is established,which can greatly improve the stability and rationarity of the Z_(OH)—Q_G relationship.The forecasting product of hourly rainfall accumulation derived from the RASIM has been put into operation.It is demonstrated that the RASIM plays an important role in the quantitative monitoring and forecasting of short-term torrential rainfall.展开更多
Utilizing shaft-speed information to analyse vibration signals is an important method for fault diagnosis and condition monitoring of rotating machineries,especially for those running at variable speeds.However,in man...Utilizing shaft-speed information to analyse vibration signals is an important method for fault diagnosis and condition monitoring of rotating machineries,especially for those running at variable speeds.However,in many cases,shaft-speed information is not always available,for a variety of reasons.Fortunately,in most of the measurements,the shaft-speed information is embedded in the vibration response in many different forms,such as in the format of the fundamental shaft-rotation-frequency response and its harmonics,and the gear-meshing-frequency response and its harmonics,etc.Proper signal processing can be used to extract the shaft instantaneous speed from the measured vibration responses.In existing instantaneous shaft-speed-identification methods,a narrow-bandpass filtering technique is used explicitly or implicitly.In a complex gearbox system,such as that used in a wind turbine,the gear-meshing-response component could be modulated by many other shaft speeds,due to the configuration of the gearbox or due to the existence of component damage.As a result,it is very difficult to isolate a single vibration-response component for instantaneous shaft-speed detection.In this paper,an innovative approach is presented.The instantaneous shaft speed is extracted based on maxima tracking from the vibration-response spectrogram.A numerical integration scheme is employed to obtain the shaft instantaneous phase.Digital-domain synchronous resampling is then applied to the vibration data by using the instantaneous phase information.Due to the nature of noise suppression in the numerical integration,the accuracy of synchronous sampling is greatly improved.This proposed approach demonstrates the feasibility and engineering applicability through a controlled laboratory test case and two field wind-turbine cases.More detailed results and conclusions of this research are presented at the end of this paper.展开更多
The Electro-optical sampling delay scanning technique can be used for electron beam bunch length measurement. A novel non-synchronous delay scanning technique based on the electro-optical sampling measurements is pres...The Electro-optical sampling delay scanning technique can be used for electron beam bunch length measurement. A novel non-synchronous delay scanning technique based on the electro-optical sampling measurements is presented. Based on Beijing Free Electron Laser (BFEL), the electron beam bunch length was measured with the electro-optical sampling technique for the first time in China. The result shows that the electron beam bunch length at BFEL is about 5.6±1.2 ps.展开更多
文摘Software synchronous sampling is widely employed in periodic signal measurement, but measurement errors occur very commonly. This paper analyses the cause of the errors, deduces the mathematical model for the measurement errors in measuring RMS voltage, RMS current and active power using the software synchronous sampling method. Some measures to reduce the errors are put forward by simulating.
基金National Key Research and Development Program of China(No.2018YFE0208200)National Natural Science Foundation of China(Nos.61971307,61905175,51775377)+5 种基金National Key Research and Development Plan Project(No.2020YFB2010800)The Fok Ying Tung Education Foundation(No.171055)China Postdoctoral Science Foundation(No.2020M680878)Guangdong Province Key Research and Development Plan Project(No.2020B0404030001)Tianjin Science and Technology Plan Project(No.20YDTPJC01660)Project of Foreign Affairs Committee of China Aviation Development Sichuan Gas Turbine Research Institute(Nos.GJCZ-2020-0040,GJCZ-2020-0041)。
文摘Synchronous sampling is very essential in underwater multilinear array seismic exploration system in which every acquisition node(AN)samples analog signals by its own analog-digital converter(ADC).Aiming at the problems of complex synchronous sampling method and long locking time after varying sampling rate in traditional underwater seismic exploration system,an improved synchronous sampling model based on the master-slave synchronous model and local clock asynchronous drive with non phase locked loop(PLL)is built,and a high-precision synchronous sampling method is proposed,which combines the short-term stability of local asynchronous driving clock with the master-slave synchronous calibration of local sampling clock.Based on the improved synchronous sampling model,the influence of clock stability,transmission delay and phase jitter on synchronous sampling error is analyzed,and a high-precision calibration method of synchronous sampling error based on step-by-step compensation of transmission delay is proposed.The model and method effectively realize the immunity of phase jitter on synchronous sampling error in principle,and compensate the influence of signal transmission delay on synchronous sampling error.At the same time,it greatly reduces the complexity of software and hardware implementation of synchronous sampling,and solves the problem of long locking time after changing the sampling rate in traditional methods.The experimental system of synchronous sampling for dual linear array is built,and the synchronous sampling accuracy is better than 5 ns.
文摘In order to eliminate the influence of frequency change on real-time voltage acquisition,a low-cost solution of voltage monitoring was proposed using the multi-channel DMA synchronous frequency trace-sampling technique.In-chip resources of the designed voltage monitor were fully utilized in hardware design to reduce external devices.The MQX RTOS was used to perform the functional tasks flexibly and efficiently;especially the Ethernet communication applications and USB device connection were realized using its TCP/IP protocol stack and USB driver.In addition,to ensure the safety of electrical records,data statistics and alarm information management were also implemented through the management of the storage in FLASH.The test results show that the voltage monitor designed in this paper has the advantages of accurate measurement,strong resistance to frequency interference and low cost,and can be widely applied in the field of voltage monitoring in distribution networks.
文摘In this paper, we study the exponential synchronization of chaotic Lur'e systems with time-varying delays via sampled-data control by using sector nonlinearties. In order to make full use of information about sampling intervals and interval time-varying delays, new Lyapunov-Krasovskii functionals with triple integral terms are introduced. Based on the convex combination technique, two kinds of synchronization criteria are derived in terms of linear matrix inequal- ities, which can be efficiently solved via standard numerical software. Finally, three numerical examples are provided to demonstrate the less conservatism and effectiveness of the proposed results.
基金Project supported by the NBHM Research Project (Grant Nos.2/48(7)/2012/NBHM(R.P.)/R and D II/12669)
文摘In this paper, the problem of exponential synchronization of complex dynamical networks with Markovian jumping parameters using sampled-data and Mode-dependent probabilistic time-varying coupling delays is investigated. The sam- pling period is assumed to be time-varying and bounded. The information of probability distribution of the time-varying delay is considered and transformed into parameter matrices of the transferred complex dynamical network model. Based on the condition, the design method of the desired sampled data controller is proposed. By constructing a new Lyapunov functional with triple integral terms, delay-distribution-dependent exponential synchronization criteria are derived in the form of linear matrix inequalities. Finally, two numerical examples are given to illustrate the effectiveness of the proposed methods.
基金partially supported by the National Science Foundation of China(11272791,61364003,and 61203006)the Innovation Program of Shanghai Municipal Education Commission(10ZZ61 and 14ZZ151)the Science and Technology Foundation of Guizhou Province(20122316)
文摘In this letter, a distributed protocol for sampled-data synchronization of coupled harmonic oscillators with controller failure and communication delays is proposed, and a brief procedure of convergence analysis for such algorithm over undirected connected graphs is provided. Furthermore, a simple yet generic criterion is also presented to guarantee synchronized oscillatory motions in coupled harmonic oscillators. Subsequently, the simulation results are worked out to demonstrate the efficiency and feasibility of the theoretical results.
基金the Ministry of Science and Technology of India(Grant No.DST/Inspire Fellowship/2010/[293]/dt.18/03/2011)
文摘We investigate the stochastic asymptotical synchronization of chaotic Markovian jumping fuzzy cellular neural networks (MJFCNNs) with discrete, unbounded distributed delays, and the Wiener process based on sampled-data control using the linear matrix inequality (LMI) approach. The Lyapunov–Krasovskii functional combined with the input delay approach as well as the free-weighting matrix approach is employed to derive several sufficient criteria in terms of LMIs to ensure that the delayed MJFCNNs with the Wiener process is stochastic asymptotical synchronous. Restrictions (e.g., time derivative is smaller than one) are removed to obtain a proposed sampled-data controller. Finally, a numerical example is provided to demonstrate the reliability of the derived results.
基金Project supported by the National Natural Science Foundation of China(Grant No.61304064)the Scientific Research Fund of Hunan Provincial Education Department,China(Grant Nos.15B067 and 16C0475)a Discovering Grant from Australian Research Council
文摘This paper is concerned with the synchronization of delayed neural networks via sampled-data control. A new technique, namely, the free-matrix-based time-dependent discontinuous Lyapunov functional approach, is adopted in constructing the Lyapunov functional, which takes advantage of the sampling characteristic of sawtooth input delay. Based on this discontinuous Lyapunov functional, some less conservative synchronization criteria are established to ensure that the slave system is synchronous with the master system. The desired sampled-data controller can be obtained through the use of the linear matrix inequality(LMI) technique. Finally, two numerical examples are provided to demonstrate the effectiveness and the improvements of the proposed methods.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 50977008,60774048,and 60774093)the National High Technology Research and Development Program of China (Grant No. 2009AA04Z127)+1 种基金the Special Grant of Financial Support from China Postdoctoral Science Foundation (Grant No. 200902547)Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 200801451096)
文摘In this paper the fault tolerant synchronization of two chaotic systems based on fuzzy model and sample data is investigated. The problem of fault tolerant synchronization is formulated to study the global asymptotical stability of the error system with the fuzzy sampled-data controller which contains a state feedback controller and a fault compensator. The synchronization can be achieved no matter whether the fault occurs or not. To investigate the stability of the error system and facilitate the design of the fuzzy sampled-data controller, a Takagi Sugeno (T-S) fuzzy model is employed to represent the chaotic system dynamics. To acquire good performance and produce a less conservative analysis result, a new parameter-dependent Lyapunov-Krasovksii functional and a relaxed stabilization technique are considered. The stability conditions based on linear matrix inequality are obtained to achieve the fault tolerant synchronization of the chaotic systems. Finally, a numerical simulation is shown to verify the results.
基金supported by the Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(Grant No.2013R1A1A2A10005201)the UAE University(Grant No.NRF Project UAEU-NRF-7-20886)
文摘We consider the impulsive effect on the exponential synchronization of neural networks with leakage delay under the sampled-data feedback control. We use an appropriate Lyapunov-Krasovskii functional combined with the input delay approach and some inequality techniques to derive sufficient conditions that ensure the exponential synchronization of the delayed neural network. The conditions are formulated in terms of the leakage delay, the sampling period, and the exponential convergence rate. Numerical examples are given to demonstrate the usefulness and the effectiveness of the results.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61203049 and 61303020)the Natural Science Foundation of Shanxi Province of China(Grant No.2013021018-3)the Doctoral Startup Foundation of Taiyuan University of Science and Technology,China(Grant No.20112010)
文摘We deal with the problem of pinning sampled-data synchronization for a complex network with probabilistic time-varying coupling delay. The sampling period considered here is assumed to be less than a given bound. Without using the Kronecker product, a new synchronization error system is constructed by using the property of the random variable and input delay approach. Based on the Lyapunov theory, a delay-dependent pinning sampled-data synchronization criterion is derived in terms of linear matrix inequalities (LMIs) that can be solved effectively by using MATLAB LMI toolbox. Numerical examples are provided to demonstrate the effectiveness of the proposed scheme.
文摘可编程约瑟夫森电压基准(programmable Josephson voltage standard,PJVS)已被初步应用于谐波信号的测量与分析,在克服过渡过程和吉布斯效应对测量结果的影响后,仍存在无法避免的非同步采样问题,这会在测量结果中引入较大误差,且影响信号的分析频谱。针对上述问题,提出了基于准同步采样的二次加权傅里叶变换方法,所提方法将准同步采样改进后与加权傅里叶变换结合,通过对原始信号进行两次不同的加权和分步修正,实现了对谐波信号的准确测量。经实验验证,使用该方法对谐波电压测量分析,测量标准偏差可达10^(-7)量级。
基金Supported by the Hubei Provincial Key Technology R&D Program(2004AA306B01)the Hubei Provincial International Cooperative Project(2005CA012)
文摘A technique for real-time synchronous integration of radar and raingauge measurements based on the concept of the quasi same-rain-volume sampling(QSVS) is presented.Because of the temporal and spatial discrepancies and resolution differences,the integration of radar measurements with raingauge observations has long been a difficult task.Observations indicate that there exists a correlation that conforms to the power law between hourly accumulated raingauge measurement(Q_G) and detected radar echo(Z_(OH)) over the raingauge.On the basis of this,a concept of the QSVS and five direct correspondent formulas of radar and raingauge samples are built up,aiming to eliminate the temporal and spatial discrepancies.A convenient and practical sampling method—the time integral vertical synchronous sampling(TIVS) is proposed and the Z_(OH)—Q_G relationship is studied.It is significant that under the fixed exponent,the coefficient A_B or A_M varies flexibly in accordance with the temporal and spatial variability of natural precipitation,having the function of synchronously integrating the Z—R conversion and the gauge adjustment into a single equation,and thus the precipitation estimation errors caused by detecting resolution differences between radar and raingauge can be obviously mitigated.The real-time synchronous integration technique using the Z_(OH)—Q_G relationship to estimate the ground hourly rainfall accumulation is called the radar-gauge synchronous integration method(RASIM).The experiments of two cases show that the accuracy of estimated surface hourly rainfall accumulation within 230 km is about 90%,and the average relative error for the point estimation over the whole process is about 20%. Through the detailed analysis of the applicability of TIVS in three environmental fields with various wind drifts,the physical essence of TIVS is explored:it is an approximate QSVS.By analyzing the data pairs of radar and raingauge,an effective quality-control procedure is established,which can greatly improve the stability and rationarity of the Z_(OH)—Q_G relationship.The forecasting product of hourly rainfall accumulation derived from the RASIM has been put into operation.It is demonstrated that the RASIM plays an important role in the quantitative monitoring and forecasting of short-term torrential rainfall.
文摘Utilizing shaft-speed information to analyse vibration signals is an important method for fault diagnosis and condition monitoring of rotating machineries,especially for those running at variable speeds.However,in many cases,shaft-speed information is not always available,for a variety of reasons.Fortunately,in most of the measurements,the shaft-speed information is embedded in the vibration response in many different forms,such as in the format of the fundamental shaft-rotation-frequency response and its harmonics,and the gear-meshing-frequency response and its harmonics,etc.Proper signal processing can be used to extract the shaft instantaneous speed from the measured vibration responses.In existing instantaneous shaft-speed-identification methods,a narrow-bandpass filtering technique is used explicitly or implicitly.In a complex gearbox system,such as that used in a wind turbine,the gear-meshing-response component could be modulated by many other shaft speeds,due to the configuration of the gearbox or due to the existence of component damage.As a result,it is very difficult to isolate a single vibration-response component for instantaneous shaft-speed detection.In this paper,an innovative approach is presented.The instantaneous shaft speed is extracted based on maxima tracking from the vibration-response spectrogram.A numerical integration scheme is employed to obtain the shaft instantaneous phase.Digital-domain synchronous resampling is then applied to the vibration data by using the instantaneous phase information.Due to the nature of noise suppression in the numerical integration,the accuracy of synchronous sampling is greatly improved.This proposed approach demonstrates the feasibility and engineering applicability through a controlled laboratory test case and two field wind-turbine cases.More detailed results and conclusions of this research are presented at the end of this paper.
基金Supported by National Natural Science Foundation of China (10575116)
文摘The Electro-optical sampling delay scanning technique can be used for electron beam bunch length measurement. A novel non-synchronous delay scanning technique based on the electro-optical sampling measurements is presented. Based on Beijing Free Electron Laser (BFEL), the electron beam bunch length was measured with the electro-optical sampling technique for the first time in China. The result shows that the electron beam bunch length at BFEL is about 5.6±1.2 ps.