[Objective] The characteristic of non-point source pollution of a typical village in Baiyangdian Lake basin was studied.[Method] The discharge of domestic sewage and solid wastes of the typical village was investigate...[Objective] The characteristic of non-point source pollution of a typical village in Baiyangdian Lake basin was studied.[Method] The discharge of domestic sewage and solid wastes of the typical village was investigated,and both pollutant and nutrient element content were monitored,as well as the water quality and quantity of rainfall runoff.[Result] The non-point source pollution of livestock manure was far more serious than the sum of domestic sewage and domestic waste in this village,and the annual emission of total organic carbon(TOC),total nitrogen(TN) and total phosphorus(TP) was 37 794.0,4 102.9 and 1 923.7 kg,respectively.The event mean concentration(EMC)of chemical oxygen demand COD,TN and TP in rainfall runoff was 44.5,78.8,1.3 mg/L,respectively,and annual pollution load was 7.6,13.4 and 0.2 kg/hm2,respectively,while the annual pollution load of COD accounted for 5.1% of standard farmland,and that of TN and TP occupied 4.5% and 0.49% of slope farmland.[Conclusion] Livestock manure was the main source of non-point source pollution in the village and the annual pollution load of non-point source pollution was obtained.展开更多
The high environmental pollution load caused by the massive pollutant emissions and the accumulation of endogenous and cross-regional pollution has become an important obstacle to the current ecological civilization c...The high environmental pollution load caused by the massive pollutant emissions and the accumulation of endogenous and cross-regional pollution has become an important obstacle to the current ecological civilization construction in the Yangtze River Economic Belt(YREB)in China.Taking the YREB as an example,by using four environmental pollutant emission indicators,including chemical oxygen demand(COD),ammonia nitrogen(NH_(3)-N),sulfur dioxide(SO_(2)),and nitrogen oxides(NO_(x)),this paper established an environmental pollution load index(EPLI)based on the entropy-based measurement.Moreover,the Spatial Durbin Model was used to quantitatively analyze the drivers and spatial effects of environmental pollution load.Finally,specific scientific references were provided for formulating environmental regulations of pollution source control in the YREB.The results showed that:1)During2011-2015,the EPLI in the YREB was reduced significantly and the environmental pollution load increased from upstream to downstream.Among them,the pollution load levels in the Upper Mainstream subbasin,Taihu Lake subbasin,and Lower Mainstream subbasin were the most prominent.2)The environmental pollution load situation in the YREB was generally stable and partially improved.High load level areas were mainly concentrated in the Yangtze River Delta Region and the provincial borders in upstream,midstream,and downstream areas.The high load level areas already formed in Chengdu and Chongqing were also the key regulatory points in the future.3)The degree of local environmental pollution load was apparently affected by the adjacent cities.The population size,industrialization level,and the fiscal decentralization not only drove the increase of the local environmental pollution load level,but also affected the adjacent areas through the spatial spillover effects.The land development intensity mainly drove the increase in the local EPLI in the YREB.While factors such as economic development level and agricultural economic share could only act on the environmental pollution load process in adjacent cities.4)According to the differentiation characteristics of drivers of each city,the YREB was divided into seven zones based on k-medoids cluster method,and targeted zoning control policy recommendations for alleviating environmental pollution load in the YREB were proposed.展开更多
To evaluate the nitrogen pollution load in an aquifer, a water and nitrogen balance analysis was conducted over a thirty-five year period at five yearly intervals. First, we established a two-horizon model comprising ...To evaluate the nitrogen pollution load in an aquifer, a water and nitrogen balance analysis was conducted over a thirty-five year period at five yearly intervals. First, we established a two-horizon model comprising a channel/soil horizon, and an aquifer horizon, with exchange of water between the aquifer and river. The nitrogen balance was estimated from the product of nitrogen concentration and water flow obtained from the water balance analysis. The aquifer nitrogen balance results were as follows: 1) In the aquifer horizon, the total nitrogen pollution load potential (NPLP) peaked in the period 1981-1990 at 1800 t·yr-1;following this the NPLP rapidly decreased to about 600 t·yr-1 in the period 2006-2010. The largest NPLP input component of 1000 t·yr-1 in the period 1976-1990 was from farmland. Subsequently, farmland NPLP decreased to only 400 t·yr-1 between 2006 and 2010. The second largest input component, 600 t·yr-1, was effluent from wastewater treatment works (WWTWs) in the period 1986-1990;this also decreased markedly to about 100 t·yr-1 between 2006 and 2010;2) The difference between input and output in the aquifer horizon, used as an index of groundwater pollution, peaked in the period 1986-1990 at about 1200 t·yr-1. This gradually decreased to about 200 t·yr-1 by 2006-2010. 3) The temporal change in NPLP coincided with the nitrogen concentration of the rivers in the study area. In addition, nitrogen concentrations in two test wells were 1.0 mg·l-1 at a depth of 150 m and only 0.25 mg·l-1 at 50 m, suggesting gradual percolation of the nitrogen polluted water deeper in the aquifer.展开更多
Taking a reservoir in South China as an example, we use rainfall-runoff unit hydrograph method to analyze the time changing process of surface runoff inflow, which generated by typical design rainfall. On the basis of...Taking a reservoir in South China as an example, we use rainfall-runoff unit hydrograph method to analyze the time changing process of surface runoff inflow, which generated by typical design rainfall. On the basis of time series data of flow and water quality in control section of the main rivers in Xili Reservoir, we establish mathematical response relation between non-point source pollutants flux, such as flux of COD, flux of NH3-H, in catchment area of control section and runoff. Then we simulate the time dynamic change progress of non-point source pollution load which generate with the initial stage runoff that generated by design rainfall and flow into reservoir. It can provide technical parameters for the design of non-point source which generate from early runoff treatment project.展开更多
With the control of point source pollution in Dianchi Lake basin, and the expansion of Kunming city, non-point source pollution has become the main source pollution of urban water environment and Dianchi Lake. To reve...With the control of point source pollution in Dianchi Lake basin, and the expansion of Kunming city, non-point source pollution has become the main source pollution of urban water environment and Dianchi Lake. To reveal the nitrogen pollution characteristics in watershed, this research selected key monitoring points and sections at Baoxiang river basin in rainy season which is the peak transported time of non-point source pollution, the nitrogen and hydrological indicators are monitored systematically. The different forms of nitrogen are analyzed, the pollution load of nitrogen are calculated and studied at cardinal sections; combined with the literature data, we compared the water nitrogen characteristics of Dianchi basin and Taihu basin, the main results are as follows:(1) In summer, water nitrogen form of Baoxiang river in the Caohe area is dominated by nitrate nitrogen, while in other areas it is dominated by ammonia nitrogen which is accounted for 31%-50% of total nitrogen;(2) The water pollution loads of Baoxiang river tended to increase from upstream to downstream, from June to August the total nitrogen pollution mainly comes from urban areas and the pollution load is 166.408 t;(3) In Dianchi Lake watershed and Taihu Lake watershed nitrogen concentration of inflow river is higher than that of the lake, nitrate nitrogen concentration between inflow river and lake shows a little difference, while ammonia nitrogen concentration of inflow river is higher than that of the lake. The results can provide the theoretical basis for nonpoint source pollution control and urban water environment planning and improvement in Dianchi Lake Basin.展开更多
Lake Uluabat, having an international significance and subject to the Ramsar Convention, is fed by the basin of Mustafakemalpasa Stream which runs through fertile lands utilized for livestock breeding and agriculture....Lake Uluabat, having an international significance and subject to the Ramsar Convention, is fed by the basin of Mustafakemalpasa Stream which runs through fertile lands utilized for livestock breeding and agriculture. In this study, total amount of nitrogen (TN) and phosphorus (TP) loads of non-point pollutants (agriculture, livestock breeding, vegetation, surface runoff and small settlements) was calculated. It was found out that most intensive pollution load stemmed from livestock breeding which causes dispersion of 13653.57 tons·year-1 of TN and 3224.45 tons·year-1 of TP into the Lake Uluabat. Additionally, seasonal changes in concentration of TN and TP were observed during the period of 2008-2009 in Lake Uluabat. It was concluded that the rise of agricultural activities in summer months was the reason underlying the increase in pollution during the months in question.展开更多
Taking Xinan River basin as research object,the status of agricultural non-point source pollution was analyzed based on field survey,as well as the effect of fertilizer and pesticide leaching and runoff,livestock and ...Taking Xinan River basin as research object,the status of agricultural non-point source pollution was analyzed based on field survey,as well as the effect of fertilizer and pesticide leaching and runoff,livestock and poultry breeding and rural domestic pollution on non-point source TN and TP.At last,some technical countermeasures of controlling non-point source pollution were put forward according to the characteristics of agricultural non-point source pollution in Xinan River basin.展开更多
In order to improve water quality of middle ancient canal in Zhenjiang city a pollution control project was carried out.The research area is the middle catchment area of the ancient canal river system in the old town ...In order to improve water quality of middle ancient canal in Zhenjiang city a pollution control project was carried out.The research area is the middle catchment area of the ancient canal river system in the old town of Zhenjiang. The specific research object is the runoff of the outfall of rainwater-sewage confluence in the area. On the basis of detecting and analyzing the water yield and water quality of the runoff of rainwater-sewage confluence a combined technology which contains four independent continuous processes for lowering pollution load was developed and system equipment was established and put into operation. The processing effects of the project were monitored and analyzed.The results show that the pollution control project of outfall runoff is efficient which decreases the pollution load including chemical oxygen demand COD total phosphorus TP suspended solids SS and ammonia-nitrogen NH3-N .As a result the water environment of the ancient canal is protected.展开更多
For pollution research with regard to urban surface runoff, most sampling strategies to date have focused on differences in land usage. With single land-use sampling, total surface runoff pollution effect cannot be ev...For pollution research with regard to urban surface runoff, most sampling strategies to date have focused on differences in land usage. With single land-use sampling, total surface runoff pollution effect cannot be evaluated unless every land usage spot is monitored. Through a new sampling strategy known as mixed stormwater sampling for a street community at discharge outlet adjacent to river, this study assessed the total urban surface runoff pollution effect caused by a variety of land uses and the pollutants washed off from the rain pipe system in the Futian River watershed in Shenzhen City of China. The water quality monitoring indices were COD (chemical oxygen demand), TSS (total suspend solid), TP (total phosphorus), TN (total nitrogen) and BOD (biochemical oxygen demand). The sums of total pollution loads discharged into the river for the four indices of COD, TSS, TN, and TP over all seven rainfall events were very different. The mathematical model for simulating total pollution loads was established from discharge outlet mixed stormwater sampling of total pollution loads on the basis of four parameters: rainfall intensity, total land area, impervious land area, and pervious land area. In order to treat surface runoff pollution, the values of MFF30 (mass first flush ratio) and FF30 (first 30% of runoff volume) can be considered as split-flow control criteria to obtain more effective and economical design of structural BMPs (best management practices) facilities.展开更多
Particles of dust washed off streets by stormwater are an important pathway of polyaromatic hydrocarbons (PAHs) into urban streams. This article presented a comprehensive assessment of the size distribution of PAHs ...Particles of dust washed off streets by stormwater are an important pathway of polyaromatic hydrocarbons (PAHs) into urban streams. This article presented a comprehensive assessment of the size distribution of PAHs in street dust particles, the potential risks of the particles in urban streams, and the sources and sinks of PAHs in the stream network. This assessment was based on measurements of 16 PAHs from the USEPA priority list in street dust particles and river sediments in Xincheng, China. The content of total PAHs ranged from 1629 to 8986 Dg/kg in street dust particles, where smaller particles have a higher concentrations. Approximately 55% of the total PAHs were associated with particles less than 250 μm which accounted for 40% of the total mass of street dust. The PAH quantities increased from 2.41 to 46.86 μg/m2 in the sequence of new residential, rising through main roads, old town residential, commercial and industrial areas. The sediments in stream reaches in town were found to be sinks for street dust particle PAHs. The research findings suggested that particle size, land use and the hydrological conditions in the stream network were the factors which most influenced the total loads of PAH in the receiving water bodies.展开更多
The land area in a river network is divided into certain-scale square cells for the sake of precision, and, based on the physical mechanisms of rainfall-runoff processes and runoff pollution, the non-point source poll...The land area in a river network is divided into certain-scale square cells for the sake of precision, and, based on the physical mechanisms of rainfall-runoff processes and runoff pollution, the non-point source pollution from cells is estimated using the export coefficients of different land use types. The non-point source pollution from a land cell should all go into the closest fiver reach, so it is distributed according to the terrain of the plain river network area and the positions of land cells and river network reaches. A relationship between a single land cell and its pollution-receiving reach can be determined using this system. In view of the above, a spatial distribution model of the rainfall runoff and non-point source pollution in reaches of a plain river network area was established. This model can provide technological support for further research on the dynamic effects of non-point source pollution on water quality.展开更多
Ascertaining the relationship between "source-sink" landscape and non-point source(NPS) pollution is crucial for reducing NPS pollution, however, it is not easy to realize this target on cell unit scale. To ...Ascertaining the relationship between "source-sink" landscape and non-point source(NPS) pollution is crucial for reducing NPS pollution, however, it is not easy to realize this target on cell unit scale. To reveal the relationships between "sourcesink" landscape and NPS pollution based on cell units of a small catchment in the Three Gorges Reservoir Region(TGRR), the runoff and nutrient yields were simulated first by rainfall events on a cell unit scale based on the Annualized AGricultural Non-Point Source Pollution Model(AnnAGNPS). Landscape structure and pattern were quantified with "sourcesink" landscape indicators based on cell units including landscape area indices and locationweighted landscape indices. The results showed that:the study case of small Wangjiagou catchment highlighted a good prediction capability of runoff and nutrient export by the AnnAGNPS model. Throughout the catchment, the spatial distribution trends of four location-weighted landscape indices were similar to the trends of simulated total nitrogen(TN) and total phosphorus(TP), which highlighted the importance of spatial arrangement of "source" and "sink" landscape types in a catchment when estimating pollutant loads. Results by Pearson correlation analysis indicated that the location-weighted landscape index provided a more comprehensive account of multiple factors, and can better reflect NPS-related nutrient loss than other landscape indices applied in single-factor analysis. This study provides new findings for applying the "source-sink" landscape indices based on cell units in small catchments to explain the effect of "source-sink" landscape on nutrient export based on cell unit, and helps improve the understanding of the correlation between "source-sink" landscape and NPS pollution.展开更多
To understand the factors causing frequent outbreaks of harmful algae blooms in the Taihu Lake, China, we studied water quality and nutrient budget in Chinese mitten crab (Eriocheir sinensis) farm ponds in the eastern...To understand the factors causing frequent outbreaks of harmful algae blooms in the Taihu Lake, China, we studied water quality and nutrient budget in Chinese mitten crab (Eriocheir sinensis) farm ponds in the eastern part of the lake from November 2007 to December 2009. We estimated the nitrogen (N), phosphorus (P), and chemical oxygen demand (COD) loads. Materials input and output ponds, water exchange, and applied management practices of 838.5-hm2 crab ponds were surveyed using questionnaires. Water quality of 12 ponds, which were located no more than 2 km from East Taihu Lake, were monitored. The results show that water quality in the crab ponds was better than reference data. Feeds, including corn seed, commercial feed, trash fish, and gastropod, were the major sources of N and P input in the crab ponds, contributing 88.7% and 94.9%, respectively. In total, 60.5% of N and 37.3% of P were sequestered by macrophytes, and only 15.7% and 8.5% of them were discharged as effluent. The net loads of N and P in effluent were 16.43 kg/hm2/cycle and 2.16 kg/hm2/cycle, respectively, while the COD load was -17.88 kg/hm2/cycle. This indicated that crab farming caused minor negative impact on the trophic status of the lake area, which was attenuated by macrophytes. However, wastewater purification is still necessary in crab faming.展开更多
Soil characterization is a vital activity to develop appropriate and effective restoration protocols for mine wastelands while insights into the total content of heavy metals in the soil is an important step in estima...Soil characterization is a vital activity to develop appropriate and effective restoration protocols for mine wastelands while insights into the total content of heavy metals in the soil is an important step in estimating the hazards that the metals may pose to the vital roles of soil in the ecosystem.This study addressed the following research questions:(1)To what extent do the physico-chemical characteristics vary between mine waste sediments and the nearby forest soil?(2)Are the concentrations of heavy metals high enough to be considered as toxic?and(3)Are heavy metals present in mine waste sediments potential sources of pollution?We hypothesized that the physicochemical characteristics of mine waste sediments are less favorably for plant establishment and growth while the concentrations of heavy metals are very high,thus restricting the success of revegetation of mine waste lands.Mine waste sediments were sampled following a diagonal transect across tailings dams,overburden dump sites and the local forest soil from the top layer(0-20 cm)using a closed auger.Samples were analyzed for arsenic,barium,lead,cadmium,cobalt,copper,chromium,nickel,vanadium,and zinc as well as for soil physico-chemical properties.The mine waste sediments were dominated by silt whilst the forest soil by sand particles,with significantly high bulk density in the former.Both the forest soil and overburden sediments were acidic than the alkaline tailings dam sediment.Total organic carbon and nitrogen contents were significantly low in mine wasteland substrates but the concentration of Ca and Mg were significantly higher in tailings dam substrate than the forest soil.The concentrations of available P,K and Na were similar across sites.The mean concentrations of heavy metals were significantly(p<0.01)higher in mine waste sediments than the forest soil;except for cadmium(p=0.213).The order of contamination by heavy metals on the tailings was Cu>Co>Ba>Ni>As>Zn>Pb>Cr>V>Cd,and that on the overburdens was Cu>Co>Ba>Ni>Zn>Cr>Pb>V>As>Cd.The pollution load index(PLI)was nearly twice higher for the tailings dam(8.97)than the overburden(5.84).The findings show that the copper mine wastes(the tailings dams and overburden waste rock sites)are highly contaminated by heavy metals;which,in turn,might pose serious hazards to human health and agricultural productivity.In addition,poor macro-nutrient availability,substrate compaction and soil acidity(particularly on overburden sites)coupled with toxic level of heavy metals would be the main challenges for successful phytostabilization of copper mine wastelands.展开更多
The key objective of this research was to estimate the Ni and Cr contents of soil around the Baghjar Chromite Mine(BCM)of Sabzevar Ophiolite Belt,Northeastern Iran,and assess the degree of soil pollution using the p...The key objective of this research was to estimate the Ni and Cr contents of soil around the Baghjar Chromite Mine(BCM)of Sabzevar Ophiolite Belt,Northeastern Iran,and assess the degree of soil pollution using the pollution indices.Soil samples(0-20 cm depth) were collected at various distances from the BCM.In the present research,heavy metals(Cr and Ni) in soil samples were analyzed by atomic absorption spectrometry to detect their concentrations and contour maps were produced to explain the metal spatial distribution.Also,the degree of metal pollution was quantified.The results indicate that the soils in the studied area are contaminated by Cr and Ni.The corresponding concentrations for Cr and Ni are(156.19±24.45) and(321.7±133.27) mg/kg,respectively,which exceed the corresponding maximum allowable concentrations in soils.The different indices demonstrate that soils around chromite mine are significantly contaminated with Cr and Ni,suggesting several times higher levels of toxic metals than normal ranges.The above results revealed that the heavy metal concentrations increase with increasing the distance from the mine and mining pollutants can be transported to long distances from their sources.展开更多
The distribution of metals (Cd, Cr, Pb, Cu, Ni and Zn) was determined in sediment cores collected from five major areas representing different anthropogenic activities along the Jordanian coast during 27 February-11 M...The distribution of metals (Cd, Cr, Pb, Cu, Ni and Zn) was determined in sediment cores collected from five major areas representing different anthropogenic activities along the Jordanian coast during 27 February-11 March 2008. Metal concentrations in these sediments were relatively low compared to reported values from polluted areas. At some of the sites metal concentrations showed fluctuations with depth in the core suggesting changes in metal loading with time. The calculated contamination factors (CFs) for the suite of metals decreased in the following order Cd > Pb > Cr > Ni >Zn > Cu. The Pollution Loading Index (PLI) calculated for the different areas were highest at Phosphate Loading Berth (0.008, 0.2607, 0.0161, 0.007, 47.9375 and 0.0296 for Cu, Pb, Ni, Zn, Cd and Cr, respectively) and lowest at Hotel Area (0.0001, 0.0075, 0.0008, 0.0006, 1.0483 and 0.0005 for Cu, Pb, Ni, Zn, Cd and Cr, respectively) with others sites between these extremes. Result of this study could be used to assess the magnitude of pollution at each site and guide rational management decisions. Moreover, the data constitutes a baseline against which future anthropogenic effects can be assessed.展开更多
Hydrological and hydro-chemical monitoring of nitrogen(N) and phosphorus(P) in a small urbanized catchment was conducted in the hilly area of the central Sichuan Basin,China,from 2010 through 2011.The diffuse N and P ...Hydrological and hydro-chemical monitoring of nitrogen(N) and phosphorus(P) in a small urbanized catchment was conducted in the hilly area of the central Sichuan Basin,China,from 2010 through 2011.The diffuse N and P loadings in different forms of total nitrogen(TN) and phosphorus(TP),dissolved nitrogen(DN) and phosphorus(DP),as well as particulate nitrogen(PN) and phosphorus(PP) were calculated based on runoff discharges and chemical analyses.The results revealed that the diffuse pollution concentrations of TN,DN,PN,TP,DP and PP exhibited large variations during rainfall events,with peak concentrations occurring during the initial period.For all of the measured parameters,the event mean concentrations(EMCs) were observed to clearly vary among rainfall events.The EMCs of TN,DN,PN,TP,DP and PP(for all of the observed rainfall events) were 10.04,6.62,3.42,1.30,0.47 and0.83 mg/L,respectively.The losses of diffuse N and P exhibited clear seasonal patterns and mainly occurred during the period from July through September,when the losses totaled 99.3 and 9.6 kg/ha for TN and TP,respectively,accounting for 75% and 74% of the total annual loadings.The mean annual loadings of TN and TP were 124.6 and 12.9 kg/ha,respectively.The results indicate that residential areas in the hilly areaof the central Sichuan Basin are subject to high diffuse N and P loadings,posing a serious risk to the receiving water quality.Ecological buffering belts are recommended to incorporate into the urbanized catchment to reduce diffuse pollution.展开更多
The present work is to evaluate and investigate the distribution of heavy metals (As, Cr and Cd) and to assess the road side samples contamination using an Index (SEPI), (CPI), (GAI), (CF) and (PLI). From right and le...The present work is to evaluate and investigate the distribution of heavy metals (As, Cr and Cd) and to assess the road side samples contamination using an Index (SEPI), (CPI), (GAI), (CF) and (PLI). From right and left Khasa in Kirkuk city, road soil samples were collected in order to estimate the probable contamination level of heavy metals (Cd), (As) and (Cr) in the study area. The heavy metal concentrations were determined in the way side samples by using (ICP-MS) technique. The 22 samples have collected in August, 2013. The results of average levels of heavy metals revealed Cr, As and Cd recorded the highest concentration of (178.6 ppm, 10.4 ppm and 0.599 ppm) in right Khasa respectively. These heavy metals are recorded the lowest value (165.8, 8.29 and 0.4 ppm) in left Khasa respectively. However, the concentration of Cr and As was higher than the studied worldwide permissible of contaminated soil. The highest (SEPI) for As in right Khasa and Cr in left in Khasa seems therefore to be that this road side soil is the most polluted in the city of Kirkuk classified moderately contamination. The accounted of (CPI) for As, Cd and Cr ranged from 0.82 to 1.30 with average 1.01 and 0.6 to 1.12 with an average 0.78 in right and left Khasa respectively. The highest values in the right Khasa which suggest multi-elements contamination and suggested this area of study area received more heavy metals comes from manmade and industrial activities. The GAI showed a moderate contaminated with Cd in right Khasa of study area, while the other metals are in their uncontaminated level. The CF results has been showed by a considerable contamination metals (As, Cr and Cd) in of right Khasa, but low to moderate contamination in left Khasa. The results of (PLI) revealed a deterioration of site quality in all samples of Kirkuk city. Thus the evaluation methods revealed that the studied areas especially right Khasa impacted with heavy industrial activity, phosphate fertilizer, emission of gasses from automobile manufacture tire abrasion and workshop causing an increasing in metal concentrations towards the right Khasa.展开更多
Background: Groundwater is an important source of drinking water for the indigenous communities of Ebocha-Obrikom. Access to safe drinking water, in particular, is critical to one’s health and, by extension, one’s i...Background: Groundwater is an important source of drinking water for the indigenous communities of Ebocha-Obrikom. Access to safe drinking water, in particular, is critical to one’s health and, by extension, one’s income and well-being. Underground wells are the primary supply of drinking water in the Niger Delta, and the groundwater is not always treated before consumption. As a result, water continues to be a vital environmental component that affects both humans and other life forms. Objectives: The aims of the research are to trace the sources and affecting factors of groundwater pollution via statistical and multivariate statistical techniques. Method: The investigation made use of standard analytical procedures. All sampling, conservation, transportation and analysis followed standard procedures described in APHA (2012). To prevent degradation of the organic substances, all obtained samples were transferred to the laboratory, while kept in an icebox. Results: The study reveals that the greater the number of principal components extracted the greater variation in geochemical composition of the ground waters. It indicated that 34 parameters were distributed into six (6) and nine (9) principal components (PCs) extracted for groundwater samples for both rainy and dry seasons, potentially suggesting the input of different pollutants from different sources. Gas flaring, mineral dissolution/precipitation and anthropogenic input are the main sources of the physicochemical indices and trace elements in the groundwater. Groundwater chemistry is predominantly regulated by natural processes such as dissolution of carbonates, silicates, and evaporates and soil leaching, followed by human activities. Climatic factors and land use types are also important in affecting groundwater chemistry. Conclusion: Greater efforts should be made to safeguard groundwater, which is hampered by geogenic and anthropogenic activities, in order to achieve sustainable groundwater development. As a result, communities are recommended to maintain a groundwater management policy to ensure long-term sustainability. The study is useful for understanding groundwater trace sources in Rivers State’s Ebocha-Obrikom districts. Such understanding would enable informed mitigation or eradication of the possible detri-mental health consequences of this groundwater, whether through its use as drinking water or indirectly through consumption of groundwater-irrigated crops. As a result, determining its primary probable source of pollution (MPSP) is critical since it provides a clearer and more immediate interpretation. Furthermore, the research findings can be used as a reference for groundwater pollution prevention and water resource protection in the Niger Delta region of Nigeria.展开更多
Stormwater runoff in rural townships has a high potential for water quality impairment but little information is available on strormwater runoff pollution from rural townships.To investigate the characteristics of run...Stormwater runoff in rural townships has a high potential for water quality impairment but little information is available on strormwater runoff pollution from rural townships.To investigate the characteristics of runoff pollution in a rural township,a catchment(2.32 ha) in Linshan Township,Sichuan,China was selected to examine runoff and quality parameters including precipitation,flow rate,and total nitrogen(TN),dissolved nitrogen(DN),total phosphorus(TP),dissolved phosphorus(DP),particulate phosphorus(PP),chemical oxygen demand(COD) and suspended solid(SS) in 12 rainfall events occurring between June 2006 and July 2007.Results show that the annual pollutant loads were 47.17 kg ha-1 for TN,6.64 kg ha-1 for TP,1186 kg ha-1 for COD,and 4297 kg ha-1 for SS.DN and PP were the main forms of nitrogen and phosphorus in stormwater runoff.TP,COD and SS showed medium mass first flushes,in which nearly 40% of the total pollutant masses were transported by the first 30% of total flow volume.The peak of pollutant concentration appeared before the peak of runoff due to the first flush of accumulative pollutants in impervious areas and drainage ditches.The EMC values of TN,TP,DN and PP were negatively correlated to the maximum rainfall intensity,precipitation,total flow volume,and runoff duration(P<0.05,n=12),while EMC of COD and SS were not related to any rainfall characteristics.The FF30(FF,First Flush) for TN,TP,COD and SS were positively correlated to the maximum rainfall intensity(P<0.05,n=12),and TP was also positively correlated to the average rainfall intensity(P<0.05,n=12),indicating that the magnitude of first flush increased with the rainfall intensity in the Linshan Township.展开更多
基金Supported by Major Projects of National Water Pollution Control and Management (2008ZX07209-007)
文摘[Objective] The characteristic of non-point source pollution of a typical village in Baiyangdian Lake basin was studied.[Method] The discharge of domestic sewage and solid wastes of the typical village was investigated,and both pollutant and nutrient element content were monitored,as well as the water quality and quantity of rainfall runoff.[Result] The non-point source pollution of livestock manure was far more serious than the sum of domestic sewage and domestic waste in this village,and the annual emission of total organic carbon(TOC),total nitrogen(TN) and total phosphorus(TP) was 37 794.0,4 102.9 and 1 923.7 kg,respectively.The event mean concentration(EMC)of chemical oxygen demand COD,TN and TP in rainfall runoff was 44.5,78.8,1.3 mg/L,respectively,and annual pollution load was 7.6,13.4 and 0.2 kg/hm2,respectively,while the annual pollution load of COD accounted for 5.1% of standard farmland,and that of TN and TP occupied 4.5% and 0.49% of slope farmland.[Conclusion] Livestock manure was the main source of non-point source pollution in the village and the annual pollution load of non-point source pollution was obtained.
基金Under the auspices of National Natural Science Foundation of China(No.41971164,41530634)Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA23020101)Second Tibetan Plateau Scientific Expedition and Research Program(No.2019QZKK0406)。
文摘The high environmental pollution load caused by the massive pollutant emissions and the accumulation of endogenous and cross-regional pollution has become an important obstacle to the current ecological civilization construction in the Yangtze River Economic Belt(YREB)in China.Taking the YREB as an example,by using four environmental pollutant emission indicators,including chemical oxygen demand(COD),ammonia nitrogen(NH_(3)-N),sulfur dioxide(SO_(2)),and nitrogen oxides(NO_(x)),this paper established an environmental pollution load index(EPLI)based on the entropy-based measurement.Moreover,the Spatial Durbin Model was used to quantitatively analyze the drivers and spatial effects of environmental pollution load.Finally,specific scientific references were provided for formulating environmental regulations of pollution source control in the YREB.The results showed that:1)During2011-2015,the EPLI in the YREB was reduced significantly and the environmental pollution load increased from upstream to downstream.Among them,the pollution load levels in the Upper Mainstream subbasin,Taihu Lake subbasin,and Lower Mainstream subbasin were the most prominent.2)The environmental pollution load situation in the YREB was generally stable and partially improved.High load level areas were mainly concentrated in the Yangtze River Delta Region and the provincial borders in upstream,midstream,and downstream areas.The high load level areas already formed in Chengdu and Chongqing were also the key regulatory points in the future.3)The degree of local environmental pollution load was apparently affected by the adjacent cities.The population size,industrialization level,and the fiscal decentralization not only drove the increase of the local environmental pollution load level,but also affected the adjacent areas through the spatial spillover effects.The land development intensity mainly drove the increase in the local EPLI in the YREB.While factors such as economic development level and agricultural economic share could only act on the environmental pollution load process in adjacent cities.4)According to the differentiation characteristics of drivers of each city,the YREB was divided into seven zones based on k-medoids cluster method,and targeted zoning control policy recommendations for alleviating environmental pollution load in the YREB were proposed.
文摘To evaluate the nitrogen pollution load in an aquifer, a water and nitrogen balance analysis was conducted over a thirty-five year period at five yearly intervals. First, we established a two-horizon model comprising a channel/soil horizon, and an aquifer horizon, with exchange of water between the aquifer and river. The nitrogen balance was estimated from the product of nitrogen concentration and water flow obtained from the water balance analysis. The aquifer nitrogen balance results were as follows: 1) In the aquifer horizon, the total nitrogen pollution load potential (NPLP) peaked in the period 1981-1990 at 1800 t·yr-1;following this the NPLP rapidly decreased to about 600 t·yr-1 in the period 2006-2010. The largest NPLP input component of 1000 t·yr-1 in the period 1976-1990 was from farmland. Subsequently, farmland NPLP decreased to only 400 t·yr-1 between 2006 and 2010. The second largest input component, 600 t·yr-1, was effluent from wastewater treatment works (WWTWs) in the period 1986-1990;this also decreased markedly to about 100 t·yr-1 between 2006 and 2010;2) The difference between input and output in the aquifer horizon, used as an index of groundwater pollution, peaked in the period 1986-1990 at about 1200 t·yr-1. This gradually decreased to about 200 t·yr-1 by 2006-2010. 3) The temporal change in NPLP coincided with the nitrogen concentration of the rivers in the study area. In addition, nitrogen concentrations in two test wells were 1.0 mg·l-1 at a depth of 150 m and only 0.25 mg·l-1 at 50 m, suggesting gradual percolation of the nitrogen polluted water deeper in the aquifer.
文摘Taking a reservoir in South China as an example, we use rainfall-runoff unit hydrograph method to analyze the time changing process of surface runoff inflow, which generated by typical design rainfall. On the basis of time series data of flow and water quality in control section of the main rivers in Xili Reservoir, we establish mathematical response relation between non-point source pollutants flux, such as flux of COD, flux of NH3-H, in catchment area of control section and runoff. Then we simulate the time dynamic change progress of non-point source pollution load which generate with the initial stage runoff that generated by design rainfall and flow into reservoir. It can provide technical parameters for the design of non-point source which generate from early runoff treatment project.
基金supported by the 2015 Science and Technology Project of Yunnan Province (Grant No. 2015FD075)Yunnan Normal University Scientific Research Training Fund Project (Grant No. ky2015-141)
文摘With the control of point source pollution in Dianchi Lake basin, and the expansion of Kunming city, non-point source pollution has become the main source pollution of urban water environment and Dianchi Lake. To reveal the nitrogen pollution characteristics in watershed, this research selected key monitoring points and sections at Baoxiang river basin in rainy season which is the peak transported time of non-point source pollution, the nitrogen and hydrological indicators are monitored systematically. The different forms of nitrogen are analyzed, the pollution load of nitrogen are calculated and studied at cardinal sections; combined with the literature data, we compared the water nitrogen characteristics of Dianchi basin and Taihu basin, the main results are as follows:(1) In summer, water nitrogen form of Baoxiang river in the Caohe area is dominated by nitrate nitrogen, while in other areas it is dominated by ammonia nitrogen which is accounted for 31%-50% of total nitrogen;(2) The water pollution loads of Baoxiang river tended to increase from upstream to downstream, from June to August the total nitrogen pollution mainly comes from urban areas and the pollution load is 166.408 t;(3) In Dianchi Lake watershed and Taihu Lake watershed nitrogen concentration of inflow river is higher than that of the lake, nitrate nitrogen concentration between inflow river and lake shows a little difference, while ammonia nitrogen concentration of inflow river is higher than that of the lake. The results can provide the theoretical basis for nonpoint source pollution control and urban water environment planning and improvement in Dianchi Lake Basin.
基金funded by the Environment,Atmosphere,Earth and Marine Sciences group(CAYDAG)(Project No:107Y278)of the Scientific and Technical Research Council of Turkey(TUBITAK)Scientific Research Foundation(Project No:M-2007/27)of Uludag University.
文摘Lake Uluabat, having an international significance and subject to the Ramsar Convention, is fed by the basin of Mustafakemalpasa Stream which runs through fertile lands utilized for livestock breeding and agriculture. In this study, total amount of nitrogen (TN) and phosphorus (TP) loads of non-point pollutants (agriculture, livestock breeding, vegetation, surface runoff and small settlements) was calculated. It was found out that most intensive pollution load stemmed from livestock breeding which causes dispersion of 13653.57 tons·year-1 of TN and 3224.45 tons·year-1 of TP into the Lake Uluabat. Additionally, seasonal changes in concentration of TN and TP were observed during the period of 2008-2009 in Lake Uluabat. It was concluded that the rise of agricultural activities in summer months was the reason underlying the increase in pollution during the months in question.
文摘Taking Xinan River basin as research object,the status of agricultural non-point source pollution was analyzed based on field survey,as well as the effect of fertilizer and pesticide leaching and runoff,livestock and poultry breeding and rural domestic pollution on non-point source TN and TP.At last,some technical countermeasures of controlling non-point source pollution were put forward according to the characteristics of agricultural non-point source pollution in Xinan River basin.
基金The National Science and Technology Major Project of China(No.2008ZX07317-001)
文摘In order to improve water quality of middle ancient canal in Zhenjiang city a pollution control project was carried out.The research area is the middle catchment area of the ancient canal river system in the old town of Zhenjiang. The specific research object is the runoff of the outfall of rainwater-sewage confluence in the area. On the basis of detecting and analyzing the water yield and water quality of the runoff of rainwater-sewage confluence a combined technology which contains four independent continuous processes for lowering pollution load was developed and system equipment was established and put into operation. The processing effects of the project were monitored and analyzed.The results show that the pollution control project of outfall runoff is efficient which decreases the pollution load including chemical oxygen demand COD total phosphorus TP suspended solids SS and ammonia-nitrogen NH3-N .As a result the water environment of the ancient canal is protected.
基金supported by the Key Project of Chinese Ministry of Education(No.108177)the National Natural Science Foundation of China(No.50679049)
文摘For pollution research with regard to urban surface runoff, most sampling strategies to date have focused on differences in land usage. With single land-use sampling, total surface runoff pollution effect cannot be evaluated unless every land usage spot is monitored. Through a new sampling strategy known as mixed stormwater sampling for a street community at discharge outlet adjacent to river, this study assessed the total urban surface runoff pollution effect caused by a variety of land uses and the pollutants washed off from the rain pipe system in the Futian River watershed in Shenzhen City of China. The water quality monitoring indices were COD (chemical oxygen demand), TSS (total suspend solid), TP (total phosphorus), TN (total nitrogen) and BOD (biochemical oxygen demand). The sums of total pollution loads discharged into the river for the four indices of COD, TSS, TN, and TP over all seven rainfall events were very different. The mathematical model for simulating total pollution loads was established from discharge outlet mixed stormwater sampling of total pollution loads on the basis of four parameters: rainfall intensity, total land area, impervious land area, and pervious land area. In order to treat surface runoff pollution, the values of MFF30 (mass first flush ratio) and FF30 (first 30% of runoff volume) can be considered as split-flow control criteria to obtain more effective and economical design of structural BMPs (best management practices) facilities.
基金supported by the Key Project of Zhe-jiang Province (No. 2006C13057)the CAS Program(No. KZCX1-YW-06-02)the Jiaxing City Project(No. 2005AZ3040).
文摘Particles of dust washed off streets by stormwater are an important pathway of polyaromatic hydrocarbons (PAHs) into urban streams. This article presented a comprehensive assessment of the size distribution of PAHs in street dust particles, the potential risks of the particles in urban streams, and the sources and sinks of PAHs in the stream network. This assessment was based on measurements of 16 PAHs from the USEPA priority list in street dust particles and river sediments in Xincheng, China. The content of total PAHs ranged from 1629 to 8986 Dg/kg in street dust particles, where smaller particles have a higher concentrations. Approximately 55% of the total PAHs were associated with particles less than 250 μm which accounted for 40% of the total mass of street dust. The PAH quantities increased from 2.41 to 46.86 μg/m2 in the sequence of new residential, rising through main roads, old town residential, commercial and industrial areas. The sediments in stream reaches in town were found to be sinks for street dust particle PAHs. The research findings suggested that particle size, land use and the hydrological conditions in the stream network were the factors which most influenced the total loads of PAH in the receiving water bodies.
基金supported by the Major Science and Technology Program for Water Pollution Control and Treatment in China (Grant No. 2008X07101-005)
文摘The land area in a river network is divided into certain-scale square cells for the sake of precision, and, based on the physical mechanisms of rainfall-runoff processes and runoff pollution, the non-point source pollution from cells is estimated using the export coefficients of different land use types. The non-point source pollution from a land cell should all go into the closest fiver reach, so it is distributed according to the terrain of the plain river network area and the positions of land cells and river network reaches. A relationship between a single land cell and its pollution-receiving reach can be determined using this system. In view of the above, a spatial distribution model of the rainfall runoff and non-point source pollution in reaches of a plain river network area was established. This model can provide technological support for further research on the dynamic effects of non-point source pollution on water quality.
基金supported by the National Natural Science Foundation of China (Nos. 41671291)
文摘Ascertaining the relationship between "source-sink" landscape and non-point source(NPS) pollution is crucial for reducing NPS pollution, however, it is not easy to realize this target on cell unit scale. To reveal the relationships between "sourcesink" landscape and NPS pollution based on cell units of a small catchment in the Three Gorges Reservoir Region(TGRR), the runoff and nutrient yields were simulated first by rainfall events on a cell unit scale based on the Annualized AGricultural Non-Point Source Pollution Model(AnnAGNPS). Landscape structure and pattern were quantified with "sourcesink" landscape indicators based on cell units including landscape area indices and locationweighted landscape indices. The results showed that:the study case of small Wangjiagou catchment highlighted a good prediction capability of runoff and nutrient export by the AnnAGNPS model. Throughout the catchment, the spatial distribution trends of four location-weighted landscape indices were similar to the trends of simulated total nitrogen(TN) and total phosphorus(TP), which highlighted the importance of spatial arrangement of "source" and "sink" landscape types in a catchment when estimating pollutant loads. Results by Pearson correlation analysis indicated that the location-weighted landscape index provided a more comprehensive account of multiple factors, and can better reflect NPS-related nutrient loss than other landscape indices applied in single-factor analysis. This study provides new findings for applying the "source-sink" landscape indices based on cell units in small catchments to explain the effect of "source-sink" landscape on nutrient export based on cell unit, and helps improve the understanding of the correlation between "source-sink" landscape and NPS pollution.
基金Supported by the Major Projects on Control and Rectification of Water Body Pollution (No. 2008ZX07101-012)the Knowledge Innovation Program of the Chinese Academy of Sciences (No. KZCX1-YW14)+1 种基金the Aquaculture "three projects" of Jiangsu (No. J2009-12)the Agricultural Basic Research Fund of Suzhou (No. YJG0912)
文摘To understand the factors causing frequent outbreaks of harmful algae blooms in the Taihu Lake, China, we studied water quality and nutrient budget in Chinese mitten crab (Eriocheir sinensis) farm ponds in the eastern part of the lake from November 2007 to December 2009. We estimated the nitrogen (N), phosphorus (P), and chemical oxygen demand (COD) loads. Materials input and output ponds, water exchange, and applied management practices of 838.5-hm2 crab ponds were surveyed using questionnaires. Water quality of 12 ponds, which were located no more than 2 km from East Taihu Lake, were monitored. The results show that water quality in the crab ponds was better than reference data. Feeds, including corn seed, commercial feed, trash fish, and gastropod, were the major sources of N and P input in the crab ponds, contributing 88.7% and 94.9%, respectively. In total, 60.5% of N and 37.3% of P were sequestered by macrophytes, and only 15.7% and 8.5% of them were discharged as effluent. The net loads of N and P in effluent were 16.43 kg/hm2/cycle and 2.16 kg/hm2/cycle, respectively, while the COD load was -17.88 kg/hm2/cycle. This indicated that crab farming caused minor negative impact on the trophic status of the lake area, which was attenuated by macrophytes. However, wastewater purification is still necessary in crab faming.
基金This work was supported by the Swedish Science Council(Vetenskapsra det,C0626501 and D0650301).
文摘Soil characterization is a vital activity to develop appropriate and effective restoration protocols for mine wastelands while insights into the total content of heavy metals in the soil is an important step in estimating the hazards that the metals may pose to the vital roles of soil in the ecosystem.This study addressed the following research questions:(1)To what extent do the physico-chemical characteristics vary between mine waste sediments and the nearby forest soil?(2)Are the concentrations of heavy metals high enough to be considered as toxic?and(3)Are heavy metals present in mine waste sediments potential sources of pollution?We hypothesized that the physicochemical characteristics of mine waste sediments are less favorably for plant establishment and growth while the concentrations of heavy metals are very high,thus restricting the success of revegetation of mine waste lands.Mine waste sediments were sampled following a diagonal transect across tailings dams,overburden dump sites and the local forest soil from the top layer(0-20 cm)using a closed auger.Samples were analyzed for arsenic,barium,lead,cadmium,cobalt,copper,chromium,nickel,vanadium,and zinc as well as for soil physico-chemical properties.The mine waste sediments were dominated by silt whilst the forest soil by sand particles,with significantly high bulk density in the former.Both the forest soil and overburden sediments were acidic than the alkaline tailings dam sediment.Total organic carbon and nitrogen contents were significantly low in mine wasteland substrates but the concentration of Ca and Mg were significantly higher in tailings dam substrate than the forest soil.The concentrations of available P,K and Na were similar across sites.The mean concentrations of heavy metals were significantly(p<0.01)higher in mine waste sediments than the forest soil;except for cadmium(p=0.213).The order of contamination by heavy metals on the tailings was Cu>Co>Ba>Ni>As>Zn>Pb>Cr>V>Cd,and that on the overburdens was Cu>Co>Ba>Ni>Zn>Cr>Pb>V>As>Cd.The pollution load index(PLI)was nearly twice higher for the tailings dam(8.97)than the overburden(5.84).The findings show that the copper mine wastes(the tailings dams and overburden waste rock sites)are highly contaminated by heavy metals;which,in turn,might pose serious hazards to human health and agricultural productivity.In addition,poor macro-nutrient availability,substrate compaction and soil acidity(particularly on overburden sites)coupled with toxic level of heavy metals would be the main challenges for successful phytostabilization of copper mine wastelands.
文摘The key objective of this research was to estimate the Ni and Cr contents of soil around the Baghjar Chromite Mine(BCM)of Sabzevar Ophiolite Belt,Northeastern Iran,and assess the degree of soil pollution using the pollution indices.Soil samples(0-20 cm depth) were collected at various distances from the BCM.In the present research,heavy metals(Cr and Ni) in soil samples were analyzed by atomic absorption spectrometry to detect their concentrations and contour maps were produced to explain the metal spatial distribution.Also,the degree of metal pollution was quantified.The results indicate that the soils in the studied area are contaminated by Cr and Ni.The corresponding concentrations for Cr and Ni are(156.19±24.45) and(321.7±133.27) mg/kg,respectively,which exceed the corresponding maximum allowable concentrations in soils.The different indices demonstrate that soils around chromite mine are significantly contaminated with Cr and Ni,suggesting several times higher levels of toxic metals than normal ranges.The above results revealed that the heavy metal concentrations increase with increasing the distance from the mine and mining pollutants can be transported to long distances from their sources.
文摘The distribution of metals (Cd, Cr, Pb, Cu, Ni and Zn) was determined in sediment cores collected from five major areas representing different anthropogenic activities along the Jordanian coast during 27 February-11 March 2008. Metal concentrations in these sediments were relatively low compared to reported values from polluted areas. At some of the sites metal concentrations showed fluctuations with depth in the core suggesting changes in metal loading with time. The calculated contamination factors (CFs) for the suite of metals decreased in the following order Cd > Pb > Cr > Ni >Zn > Cu. The Pollution Loading Index (PLI) calculated for the different areas were highest at Phosphate Loading Berth (0.008, 0.2607, 0.0161, 0.007, 47.9375 and 0.0296 for Cu, Pb, Ni, Zn, Cd and Cr, respectively) and lowest at Hotel Area (0.0001, 0.0075, 0.0008, 0.0006, 1.0483 and 0.0005 for Cu, Pb, Ni, Zn, Cd and Cr, respectively) with others sites between these extremes. Result of this study could be used to assess the magnitude of pollution at each site and guide rational management decisions. Moreover, the data constitutes a baseline against which future anthropogenic effects can be assessed.
基金provided by the Innovative Team Program of Chinese Academy of Sciences (Grant No.KZZD-EW-TZ-06)the National Natural Science Foundation of China (Grant No.41430750)the National Science & Technology Pillar Program (Grant No.2011BAD31B03)
文摘Hydrological and hydro-chemical monitoring of nitrogen(N) and phosphorus(P) in a small urbanized catchment was conducted in the hilly area of the central Sichuan Basin,China,from 2010 through 2011.The diffuse N and P loadings in different forms of total nitrogen(TN) and phosphorus(TP),dissolved nitrogen(DN) and phosphorus(DP),as well as particulate nitrogen(PN) and phosphorus(PP) were calculated based on runoff discharges and chemical analyses.The results revealed that the diffuse pollution concentrations of TN,DN,PN,TP,DP and PP exhibited large variations during rainfall events,with peak concentrations occurring during the initial period.For all of the measured parameters,the event mean concentrations(EMCs) were observed to clearly vary among rainfall events.The EMCs of TN,DN,PN,TP,DP and PP(for all of the observed rainfall events) were 10.04,6.62,3.42,1.30,0.47 and0.83 mg/L,respectively.The losses of diffuse N and P exhibited clear seasonal patterns and mainly occurred during the period from July through September,when the losses totaled 99.3 and 9.6 kg/ha for TN and TP,respectively,accounting for 75% and 74% of the total annual loadings.The mean annual loadings of TN and TP were 124.6 and 12.9 kg/ha,respectively.The results indicate that residential areas in the hilly areaof the central Sichuan Basin are subject to high diffuse N and P loadings,posing a serious risk to the receiving water quality.Ecological buffering belts are recommended to incorporate into the urbanized catchment to reduce diffuse pollution.
文摘The present work is to evaluate and investigate the distribution of heavy metals (As, Cr and Cd) and to assess the road side samples contamination using an Index (SEPI), (CPI), (GAI), (CF) and (PLI). From right and left Khasa in Kirkuk city, road soil samples were collected in order to estimate the probable contamination level of heavy metals (Cd), (As) and (Cr) in the study area. The heavy metal concentrations were determined in the way side samples by using (ICP-MS) technique. The 22 samples have collected in August, 2013. The results of average levels of heavy metals revealed Cr, As and Cd recorded the highest concentration of (178.6 ppm, 10.4 ppm and 0.599 ppm) in right Khasa respectively. These heavy metals are recorded the lowest value (165.8, 8.29 and 0.4 ppm) in left Khasa respectively. However, the concentration of Cr and As was higher than the studied worldwide permissible of contaminated soil. The highest (SEPI) for As in right Khasa and Cr in left in Khasa seems therefore to be that this road side soil is the most polluted in the city of Kirkuk classified moderately contamination. The accounted of (CPI) for As, Cd and Cr ranged from 0.82 to 1.30 with average 1.01 and 0.6 to 1.12 with an average 0.78 in right and left Khasa respectively. The highest values in the right Khasa which suggest multi-elements contamination and suggested this area of study area received more heavy metals comes from manmade and industrial activities. The GAI showed a moderate contaminated with Cd in right Khasa of study area, while the other metals are in their uncontaminated level. The CF results has been showed by a considerable contamination metals (As, Cr and Cd) in of right Khasa, but low to moderate contamination in left Khasa. The results of (PLI) revealed a deterioration of site quality in all samples of Kirkuk city. Thus the evaluation methods revealed that the studied areas especially right Khasa impacted with heavy industrial activity, phosphate fertilizer, emission of gasses from automobile manufacture tire abrasion and workshop causing an increasing in metal concentrations towards the right Khasa.
文摘Background: Groundwater is an important source of drinking water for the indigenous communities of Ebocha-Obrikom. Access to safe drinking water, in particular, is critical to one’s health and, by extension, one’s income and well-being. Underground wells are the primary supply of drinking water in the Niger Delta, and the groundwater is not always treated before consumption. As a result, water continues to be a vital environmental component that affects both humans and other life forms. Objectives: The aims of the research are to trace the sources and affecting factors of groundwater pollution via statistical and multivariate statistical techniques. Method: The investigation made use of standard analytical procedures. All sampling, conservation, transportation and analysis followed standard procedures described in APHA (2012). To prevent degradation of the organic substances, all obtained samples were transferred to the laboratory, while kept in an icebox. Results: The study reveals that the greater the number of principal components extracted the greater variation in geochemical composition of the ground waters. It indicated that 34 parameters were distributed into six (6) and nine (9) principal components (PCs) extracted for groundwater samples for both rainy and dry seasons, potentially suggesting the input of different pollutants from different sources. Gas flaring, mineral dissolution/precipitation and anthropogenic input are the main sources of the physicochemical indices and trace elements in the groundwater. Groundwater chemistry is predominantly regulated by natural processes such as dissolution of carbonates, silicates, and evaporates and soil leaching, followed by human activities. Climatic factors and land use types are also important in affecting groundwater chemistry. Conclusion: Greater efforts should be made to safeguard groundwater, which is hampered by geogenic and anthropogenic activities, in order to achieve sustainable groundwater development. As a result, communities are recommended to maintain a groundwater management policy to ensure long-term sustainability. The study is useful for understanding groundwater trace sources in Rivers State’s Ebocha-Obrikom districts. Such understanding would enable informed mitigation or eradication of the possible detri-mental health consequences of this groundwater, whether through its use as drinking water or indirectly through consumption of groundwater-irrigated crops. As a result, determining its primary probable source of pollution (MPSP) is critical since it provides a clearer and more immediate interpretation. Furthermore, the research findings can be used as a reference for groundwater pollution prevention and water resource protection in the Niger Delta region of Nigeria.
基金supports from the Western Development Plan of CAS (No. KZCX2-XB3-09)the Project of National Science & Technology Pillar Program (No. 2011BAD31B03)
文摘Stormwater runoff in rural townships has a high potential for water quality impairment but little information is available on strormwater runoff pollution from rural townships.To investigate the characteristics of runoff pollution in a rural township,a catchment(2.32 ha) in Linshan Township,Sichuan,China was selected to examine runoff and quality parameters including precipitation,flow rate,and total nitrogen(TN),dissolved nitrogen(DN),total phosphorus(TP),dissolved phosphorus(DP),particulate phosphorus(PP),chemical oxygen demand(COD) and suspended solid(SS) in 12 rainfall events occurring between June 2006 and July 2007.Results show that the annual pollutant loads were 47.17 kg ha-1 for TN,6.64 kg ha-1 for TP,1186 kg ha-1 for COD,and 4297 kg ha-1 for SS.DN and PP were the main forms of nitrogen and phosphorus in stormwater runoff.TP,COD and SS showed medium mass first flushes,in which nearly 40% of the total pollutant masses were transported by the first 30% of total flow volume.The peak of pollutant concentration appeared before the peak of runoff due to the first flush of accumulative pollutants in impervious areas and drainage ditches.The EMC values of TN,TP,DN and PP were negatively correlated to the maximum rainfall intensity,precipitation,total flow volume,and runoff duration(P<0.05,n=12),while EMC of COD and SS were not related to any rainfall characteristics.The FF30(FF,First Flush) for TN,TP,COD and SS were positively correlated to the maximum rainfall intensity(P<0.05,n=12),and TP was also positively correlated to the average rainfall intensity(P<0.05,n=12),indicating that the magnitude of first flush increased with the rainfall intensity in the Linshan Township.