We present a protocol for quantum private comparison of equality(QPCE) with the help of a semi-honest third party(TP).Instead of employing the entanglement,we use single photons to achieve the comparison in this proto...We present a protocol for quantum private comparison of equality(QPCE) with the help of a semi-honest third party(TP).Instead of employing the entanglement,we use single photons to achieve the comparison in this protocol.By utilizing collective eavesdropping detection strategy,our protocol has the advantage of higher qubit efficiency and lower cost of implementation.In addition to this protocol,we further introduce three robust versions which can be immune to collective dephasing noise,collective-rotation noise and all types of unitary collective noise,respectively.Finally,we show that our protocols can be secure against the attacks from both the outside eavesdroppers and the inside participants by using the theorems on quantum operation discrimination.展开更多
A protocol for quantum private comparison of equality(QPCE) is proposed based on five-particle cluster state with the help of a semi-honest third party(TP). In our protocol, TP is allowed to misbehave on its own but c...A protocol for quantum private comparison of equality(QPCE) is proposed based on five-particle cluster state with the help of a semi-honest third party(TP). In our protocol, TP is allowed to misbehave on its own but can not conspire with either of two parties. Compared with most two-user QPCE protocols, our protocol not only can compare two groups of private information(each group has two users) in one execution, but also compare just two private information. Compared with the multi-user QPCE protocol proposed, our protocol is safer with more reasonable assumptions of TP. The qubit efficiency is computed and analyzed. Our protocol can also be generalized to the case of 2N participants with one TP. The 2N-participant protocol can compare two groups(each group has N private information)in one execution or just N private information.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos.61272057,61170270,61100203,61003286,61121061 and 61103210)the Program for New Century Excellent Talents in Universities (Grant No.NCET-10-0260)+3 种基金the Specialized Research Fund for the Doctoral Program of Higher Education (Grant No.20090005110010)the Natural Science Foundation of Beijing (Grant Nos.4112040 and 4122054)the Fundamental Research Funds for the Central Universities (Grant No.2011YB01)the BUPT Excellent Ph.D.Students Foundation (Grant No.CX201217)
文摘We present a protocol for quantum private comparison of equality(QPCE) with the help of a semi-honest third party(TP).Instead of employing the entanglement,we use single photons to achieve the comparison in this protocol.By utilizing collective eavesdropping detection strategy,our protocol has the advantage of higher qubit efficiency and lower cost of implementation.In addition to this protocol,we further introduce three robust versions which can be immune to collective dephasing noise,collective-rotation noise and all types of unitary collective noise,respectively.Finally,we show that our protocols can be secure against the attacks from both the outside eavesdroppers and the inside participants by using the theorems on quantum operation discrimination.
基金Supported by NSFC under Grant Nos.61402058,61572086the Fund for Middle and Young Academic Leaders of CUIT under Grant No.J201511+2 种基金the Science and Technology Support Project of Sichuan Province of China under Grant No.2013GZX0137the Fund for Young Persons Project of Sichuan Province of China under Grant No.12ZB017the Foundation of Cyberspace Security Key Laboratory of Sichuan Higher Education Institutions under Grant No.szjj2014-074
文摘A protocol for quantum private comparison of equality(QPCE) is proposed based on five-particle cluster state with the help of a semi-honest third party(TP). In our protocol, TP is allowed to misbehave on its own but can not conspire with either of two parties. Compared with most two-user QPCE protocols, our protocol not only can compare two groups of private information(each group has two users) in one execution, but also compare just two private information. Compared with the multi-user QPCE protocol proposed, our protocol is safer with more reasonable assumptions of TP. The qubit efficiency is computed and analyzed. Our protocol can also be generalized to the case of 2N participants with one TP. The 2N-participant protocol can compare two groups(each group has N private information)in one execution or just N private information.