Let A∈C<sup>m×n</sup>,set eigenvalues of matrix A with |λ<sub>1</sub> (A)|≥|λ<sub>2</sub>(A)|≥…≥|λ<sub>n</sub>(A)|,write A≥0 if A is a positive semid...Let A∈C<sup>m×n</sup>,set eigenvalues of matrix A with |λ<sub>1</sub> (A)|≥|λ<sub>2</sub>(A)|≥…≥|λ<sub>n</sub>(A)|,write A≥0 if A is a positive semidefinite Hermitian matrix, and denote∧<sub>k</sub> (A)=diag (λ<sub>1</sub>(A),…,λ<sub>k</sub>(A)),∧<sub>(</sub>(n-k).(A)=diag (λ<sub>k+1</sub>(A),…,λ<sub>n</sub>(A))for any k=1, 2,...,n if A≥0. Denote all n order unitary matrices by U<sup>n×n</sup>.Problem of equalities to hold in eigenvalue inequalities for products of matrices展开更多
基金Supported partly by National Natural Science Foundation of China
文摘Let A∈C<sup>m×n</sup>,set eigenvalues of matrix A with |λ<sub>1</sub> (A)|≥|λ<sub>2</sub>(A)|≥…≥|λ<sub>n</sub>(A)|,write A≥0 if A is a positive semidefinite Hermitian matrix, and denote∧<sub>k</sub> (A)=diag (λ<sub>1</sub>(A),…,λ<sub>k</sub>(A)),∧<sub>(</sub>(n-k).(A)=diag (λ<sub>k+1</sub>(A),…,λ<sub>n</sub>(A))for any k=1, 2,...,n if A≥0. Denote all n order unitary matrices by U<sup>n×n</sup>.Problem of equalities to hold in eigenvalue inequalities for products of matrices