We take the contribution of all valence electrons into consideration and propose a new valence electrons equilibration method to calculate the equalized electronegativity including molecular electronegativity, group e...We take the contribution of all valence electrons into consideration and propose a new valence electrons equilibration method to calculate the equalized electronegativity including molecular electronegativity, group electronegativity, and atomic charge. The ionization potential of alkanes and mono-substituted alkanes, the chemical shift of 1H NMR, and the gas phase proton affinity of aliphatic amines, alcohols, and ethers were estimated. All the expressions have good correlations. Moreover, the Sanderson method and Bratsch method were modified on the basis of the valence electrons equilibration theory. The modified Sanderson method and modified Bratsch method are more effective than their original methods to estimate these properties.展开更多
In Quantum Information Theory(QIT) the classical measures of information content in probability distributions are replaced by the corresponding resultant entropic descriptors containing the nonclassical terms generate...In Quantum Information Theory(QIT) the classical measures of information content in probability distributions are replaced by the corresponding resultant entropic descriptors containing the nonclassical terms generated by the state phase or its gradient(electronic current). The classical Shannon(S[p]) and Fisher(I[p]) information terms probe the entropic content of incoherent local events of the particle localization, embodied in the probability distribution p, while their nonclassical phase-companions, S[ Φ ] and I[ Φ ], provide relevant coherence information supplements.Thermodynamic-like couplings between the entropic and energetic descriptors of molecular states are shown to be precluded by the principles of quantum mechanics. The maximum of resultant entropy determines the phase-equilibrium state, defined by "thermodynamic" phase related to electronic density,which can be used to describe reactants in hypothetical stages of a bimolecular chemical reaction.Information channels of molecular systems and their entropic bond indices are summarized, the complete-bridge propagations are examined, and sequential cascades involving the complete sets of the atomic-orbital intermediates are interpreted as Markov chains. The QIT description is applied to reactive systems R = A―B, composed of the Acidic(A) and Basic(B) reactants. The electronegativity equalization processes are investigated and implications of the concerted patterns of electronic flows in equilibrium states of the complementarily arranged substrates are investigated. Quantum communications between reactants are explored and the QIT descriptors of the A―B bond multiplicity/composition are extracted.展开更多
This paper summarizes significant progress in quantifying organic substituent effects in the last 20 years. The main content is as follows: (1) The principle of electronegativity equalization has gained wide accept...This paper summarizes significant progress in quantifying organic substituent effects in the last 20 years. The main content is as follows: (1) The principle of electronegativity equalization has gained wide acceptance, and has been used to calculate the intramolecular charge distribution and inductive effect of groups. A valence electrons equalization method was proposed to compute the molecular electronegativity on the basis of geometric mean method, harmonic mean method, and weighted mean method. This new calculation method further extended the application of the principle of electronegativity equalization. (2) A scale method was established for experimentally determining the electrophilic and nucleophilic ability of reagents, in which benzhydryliumions and quinone methides were taken as the reference compounds, and the research field was extended to the gas phase conditions, organometallic reaction and radicals system. Moreover, the nucleophilicity parameters N and electro- philicity parameters E for a series of reagents were obtained. The definition and quantitative expression of electrophilicity in- dex co and nucleophilicity index co were proposed theoretically, and the correlation between the parameters from experimental determination and the indexes from theoretical calculation was also investigated. (3) The polarizability effect parameter was initially calculated by empirical method and further developed by quantum chemistry method. Recently, the polarizability ef- fect index of alkyl (PEI) and groups (PEIx) were proposed by statistical method, and got wide applications in explaining and estimating gas-phase acidity and basicity, ionization energy, enthalpy of formation, bond energy, reaction rate, water solubility and chromatographic retention for organic compounds. (4) The excited-state substituent constant Crcc obtained directly from the UV absorption energy data of substituted benzenes, is different from the polar constants in molecular ground state and the radical spin-delocalization effects constants in molecular radical state. The proposed constant Crcc correlated well with the UV absorption energy of many kinds of organic compounds, such as 1,4-disubstituted benzenes, substituted stilbenes, and di- substituted N-benzylidenebenzenamine. (5) The establishment of the steric shielding effect distinguished the three traditional steric effects. The stereoselectivity index Ci was proposed to quantify the stereoselectivity of the addition reaction of carbonyl with nucleophilic reagent. The shielding parameter Rs was defined to quantitatively express the specific surface of the reac- tion center screened by a group. Further, the Topological Steric Effect Index (TSEI) of a group was proposed on the basis of the relative specific volume of reaction center screened by the atoms of substituents. These parameters can be applied in esti- mating the intramolecular dihedral angles, stereoselectivity of reaction, enthalpies of formation of alkenes and alkylbenzene, acidity of substitutedimidazolium ionic liquid, and the reaction rate of alkane and hydroxyl radical. In addition, some sugges- tions and prospects for further studies on quantifying the organic substituent effects were presented in this paper.展开更多
文摘We take the contribution of all valence electrons into consideration and propose a new valence electrons equilibration method to calculate the equalized electronegativity including molecular electronegativity, group electronegativity, and atomic charge. The ionization potential of alkanes and mono-substituted alkanes, the chemical shift of 1H NMR, and the gas phase proton affinity of aliphatic amines, alcohols, and ethers were estimated. All the expressions have good correlations. Moreover, the Sanderson method and Bratsch method were modified on the basis of the valence electrons equilibration theory. The modified Sanderson method and modified Bratsch method are more effective than their original methods to estimate these properties.
文摘In Quantum Information Theory(QIT) the classical measures of information content in probability distributions are replaced by the corresponding resultant entropic descriptors containing the nonclassical terms generated by the state phase or its gradient(electronic current). The classical Shannon(S[p]) and Fisher(I[p]) information terms probe the entropic content of incoherent local events of the particle localization, embodied in the probability distribution p, while their nonclassical phase-companions, S[ Φ ] and I[ Φ ], provide relevant coherence information supplements.Thermodynamic-like couplings between the entropic and energetic descriptors of molecular states are shown to be precluded by the principles of quantum mechanics. The maximum of resultant entropy determines the phase-equilibrium state, defined by "thermodynamic" phase related to electronic density,which can be used to describe reactants in hypothetical stages of a bimolecular chemical reaction.Information channels of molecular systems and their entropic bond indices are summarized, the complete-bridge propagations are examined, and sequential cascades involving the complete sets of the atomic-orbital intermediates are interpreted as Markov chains. The QIT description is applied to reactive systems R = A―B, composed of the Acidic(A) and Basic(B) reactants. The electronegativity equalization processes are investigated and implications of the concerted patterns of electronic flows in equilibrium states of the complementarily arranged substrates are investigated. Quantum communications between reactants are explored and the QIT descriptors of the A―B bond multiplicity/composition are extracted.
基金financially supported by the National Natural Science Foundation of China (21272063, 21072053, 20772028, 20472019 and20172043)the Scientific Research Fund of Hunan Provincial Education Department (10K025)
文摘This paper summarizes significant progress in quantifying organic substituent effects in the last 20 years. The main content is as follows: (1) The principle of electronegativity equalization has gained wide acceptance, and has been used to calculate the intramolecular charge distribution and inductive effect of groups. A valence electrons equalization method was proposed to compute the molecular electronegativity on the basis of geometric mean method, harmonic mean method, and weighted mean method. This new calculation method further extended the application of the principle of electronegativity equalization. (2) A scale method was established for experimentally determining the electrophilic and nucleophilic ability of reagents, in which benzhydryliumions and quinone methides were taken as the reference compounds, and the research field was extended to the gas phase conditions, organometallic reaction and radicals system. Moreover, the nucleophilicity parameters N and electro- philicity parameters E for a series of reagents were obtained. The definition and quantitative expression of electrophilicity in- dex co and nucleophilicity index co were proposed theoretically, and the correlation between the parameters from experimental determination and the indexes from theoretical calculation was also investigated. (3) The polarizability effect parameter was initially calculated by empirical method and further developed by quantum chemistry method. Recently, the polarizability ef- fect index of alkyl (PEI) and groups (PEIx) were proposed by statistical method, and got wide applications in explaining and estimating gas-phase acidity and basicity, ionization energy, enthalpy of formation, bond energy, reaction rate, water solubility and chromatographic retention for organic compounds. (4) The excited-state substituent constant Crcc obtained directly from the UV absorption energy data of substituted benzenes, is different from the polar constants in molecular ground state and the radical spin-delocalization effects constants in molecular radical state. The proposed constant Crcc correlated well with the UV absorption energy of many kinds of organic compounds, such as 1,4-disubstituted benzenes, substituted stilbenes, and di- substituted N-benzylidenebenzenamine. (5) The establishment of the steric shielding effect distinguished the three traditional steric effects. The stereoselectivity index Ci was proposed to quantify the stereoselectivity of the addition reaction of carbonyl with nucleophilic reagent. The shielding parameter Rs was defined to quantitatively express the specific surface of the reac- tion center screened by a group. Further, the Topological Steric Effect Index (TSEI) of a group was proposed on the basis of the relative specific volume of reaction center screened by the atoms of substituents. These parameters can be applied in esti- mating the intramolecular dihedral angles, stereoselectivity of reaction, enthalpies of formation of alkenes and alkylbenzene, acidity of substitutedimidazolium ionic liquid, and the reaction rate of alkane and hydroxyl radical. In addition, some sugges- tions and prospects for further studies on quantifying the organic substituent effects were presented in this paper.