The vertical resolution of LICOM1.0 (LASG/IAP Climate System Ocean Model, version 1.0) is adjusted by increasing the level amount within the upper 150 m while keeping the total of levels. It is found that the eastern ...The vertical resolution of LICOM1.0 (LASG/IAP Climate System Ocean Model, version 1.0) is adjusted by increasing the level amount within the upper 150 m while keeping the total of levels. It is found that the eastern equatorial Pacific cold tongue is sensitive to the adjustment. Compared with the simulation of the original level scheme, the adjusting yields a more realistic structure of cold tongue extending from the coast of Peru to the equator, as well as a temperature minimum at Costa Rica coast, north of the cold tongue. In the original scheme experiment, the sharp heating by net surface heat flux at the beginning of spin-up leads to a great warm- ing in the eastern equatorial Pacific Ocean. The weak vertical advection due to a too thick mixed layer in the coarse vertical structure also accounts for the warm bias. The fact that most significant improvements of the upper 50 m temperature appear at the region of the thinnest mixed layer indicates the necessity of fine vertical resolution for the eastern equatorial Pacific Ocean. However, the westward extension of equatorial cold tongue, a defect in the original scheme, gets even more serious in the adjusting scheme due to the intensi- fied vertical velocity and hence vertical advection in the central-eastern equatorial Pacific Ocean.展开更多
The sea surface temperature(SST)seasonal cycle in the eastern equatorial Pacific(EEP)plays an important role in the El Nino–Southern Oscillation(ENSO)phenomenon.However,the reasonable simulation of SST seasonal cycle...The sea surface temperature(SST)seasonal cycle in the eastern equatorial Pacific(EEP)plays an important role in the El Nino–Southern Oscillation(ENSO)phenomenon.However,the reasonable simulation of SST seasonal cycle in the EEP is still a challenge for climate models.In this paper,we evaluated the performance of 17 CMIP6 climate models in simulating the seasonal cycle in the EEP and compared them with 43 CMIP5 climate models.In general,only CESM2 and SAM0-UNICON are able to successfully capture the annual mean SST characteristics,and the results showed that CMIP6 models have no fundamental improvement in the model annual mean bias.For the seasonal cycle,14 out of 17 climate models are able to represent the major characteristics of the observed SST annual evolution.In spring,12 models capture the 1–2 months leading the eastern equatorial Pacific region 1(EP1;5°S–5°N,110°–85°W)against the eastern equatorial Pacific region 2(EP2;5°S–5°N,140°–110°W).In autumn,only two models,GISS-E2-G and SAM0-UNICON,correctly show that the EP1 and EP2 SSTs vary in phase.For the CMIP6 MME SST simulation in EP1,both the cold bias along the equator in the warm phase and the warm bias in the cold phase lead to a weaker annual SST cycle in the CGCMs,which is similar to the CMIP5 results.However,both the seasonal cold bias and warm bias are considerably decreased for CMIP6,which leads the annual SST cycle to more closely reflect the observation.For the CMIP6 MME SST simulation in EP2,the amplitude is similar to the observed value due to the quasi-constant cold bias throughout the year,although the cold bias is clearly improved after August compared with CMIP5 models.Overall,although SAM0-UNICON successfully captured the seasonal cycle characteristics in the EEP and the improvement from CMIP5 to CMIP6 in simulating EEP SST is clear,the fundamental climate models simulated biases still exist.展开更多
Sea-surface temperature (SST) in the eastern, equatorial Pacific and rain days over China in summer are analysed using correlation moments that is proposed by author and principal component analysis(PCA). Occurrences ...Sea-surface temperature (SST) in the eastern, equatorial Pacific and rain days over China in summer are analysed using correlation moments that is proposed by author and principal component analysis(PCA). Occurrences of the strong rain-day anomalies over China are associated with extreme SSTs in some years. Areas significantly affected by the phenomena include North and Northeast China.展开更多
Satellite observations of SSTs have revealed the existence of unstable waves in the equatorial eastern Pacific and Atlantic oceans. These waves have a 20-40-day periodicity with westward phase speeds of 0.4-0.6 m s^-1...Satellite observations of SSTs have revealed the existence of unstable waves in the equatorial eastern Pacific and Atlantic oceans. These waves have a 20-40-day periodicity with westward phase speeds of 0.4-0.6 m s^-1 and wavelengths of 1000-2000 km during boreal summer and fall. They are generally called tropical instability waves (TIWs). This study investigates TIWs simulated by a high-resolution coupled atmosphere-ocean general circulation model (AOGCM). The horizontal resolution of the model is 120 km in the atmosphere, and 30 km longitude by 20 km latitude in the ocean. Model simulations show good agreement with the observed main features associated with TIWs. The results of energetics analysis reveal that barotropic energy conversion is responsible for providing the main energy source for TIWs by extracting energy from the meridional shear of the climatological-mean equatorial currents in the mixed layer. This deeper and northward-extended wave activity appears to gain its energy through baroclinic conversion via buoyancy work, which further contributes to the asymmetric distribution of TIWs. It is estimated that the strong cooling effect induced by equatorial upwelling is partially (-30%-40%) offset by the equatorward heat flux due to TIWs in the eastern tropical Pacific during the seasons when TIWs are active. The atmospheric mixed layer just above the sea surface responds to the waves with enhanced or reduced vertical mixing. Furthermore, the changes in turbulent mixing feed back to sea surface evaporation, favoring the westward propagation of TIWs. The atmosphere to the south of the Equator also responds to TIWs in a similar way, although TIWs are much weaker south of the Equator.展开更多
Based on the reanalysis data of global 500hPa geopotential height (NCEP NCAR CDAS-1) and tropical Pacific SSTs, the characteristics of global subtropical highs and their response to tropical eastern Pacific SST are i...Based on the reanalysis data of global 500hPa geopotential height (NCEP NCAR CDAS-1) and tropical Pacific SSTs, the characteristics of global subtropical highs and their response to tropical eastern Pacific SST are investigated. Results show that global subtropical highs respond to SST consistently. Subtropical high intensity correlates to the 3 months leading SST maximally. The relationship between SST and 500hPa height stands out in low latitudes. The time for 500hPa height reaching maximuxn correlation to SST is 2 months later in latitude of 10 degree and 9 months in latitude of 30 degree than equatorial zone. And the response of atmospheric circulation over extratropic performs as wave train, and the response is more significant in the condition of warmer SST. Persistence of SSTs and subtropical highs changes obviously from season to season. Minimum persistence of subtropical highs in September and October may relate to the low persistence of SSTs in August and September.展开更多
-In this paper the variations of the sea surface temperature anomalies (SSTA) in the Equatorial Eastern Pacific are analysed. The results show that there are two peaks in the spectrum. One is the low frequency oscilla...-In this paper the variations of the sea surface temperature anomalies (SSTA) in the Equatorial Eastern Pacific are analysed. The results show that there are two peaks in the spectrum. One is the low frequency oscillation with a period of 3 - 5 years, and the other is the quasi-biennial oscillation. The former shows a westward migration in the warm episode of SSTA and the latter has the opposite trend. The El Nino events will be formed while the two frquency bands are in phase in the warming stage of SSTA in the Equatorial Eastern Pacific展开更多
Seasonal variations of the equatorial undercurrent(EUC) termination in the Eastern Pacific,and their mechanism were examined using the Estimating the Circulation and Climate of the Ocean,PhaseⅡ(ECCO2).The ECCO2 repro...Seasonal variations of the equatorial undercurrent(EUC) termination in the Eastern Pacific,and their mechanism were examined using the Estimating the Circulation and Climate of the Ocean,PhaseⅡ(ECCO2).The ECCO2 reproduced a weak and shallow eastward EUC east of the Galapagos Islands,with annual mean transport of half of EUC to the west of the Islands.The diagnosis of zonal momentum equation suggests that the zonal advection(nonlinear terms) drives the EUC beyond the Islands rather than the pressure gradient force.The EUC in the Far Eastern Pacific has the large st core velocity in boreal spring and the smallest one in boreal summer,and its volume transport exhibits two maxima in boreal spring and autumn.The seasonal variability of the EUC in the Eastern Pacific is dominated by the Kelvin and Rossby waves excited by the zonal winds anomalies in the central and Eastern Pacific that are associated with the seasonal relaxation or intensification of the trade wind.In the Far Eastern Pacific to the east of 120°W,the eastward propagation Kelvin waves play a dominate role in the seasonal cycle of the EUC,results in a semiannual fluctuation with double peaks in boreal spring and autumn.A construction of water mass budget suggests that approximately 24.1% of the EUC water east of 100°W has upwelled to the mixed layer by0.35 m/d.The estimated upwelling is stronge st during boreal autumn and weake st during boreal winter.It is also found that approximately 42.6% of the EUC turns westward to feed the south equatorial current(SEC),13.2% flows north of the equator,and 20.1% flows south of the equator,mainly contributing to Peru-Chile undercurrent.展开更多
Low temperature together with snow/freezing rain is disastrous in winter over southern China.Previous studies suggest that this is related to the sea surface temperature(SST)anomalies,especially La Nina conditions,ove...Low temperature together with snow/freezing rain is disastrous in winter over southern China.Previous studies suggest that this is related to the sea surface temperature(SST)anomalies,especially La Nina conditions,over the equatorial central–eastern Pacific Ocean(EP).In reality,however,La Nina episodes are not always accompanied by rainy/snowy/icy(CRSI)days in southern China,such as the case in winter 2020/2021.Is there any other factor that works jointly with the EP SST to affect the winter CRSI weather in southern China?To address this question,CRSI days are defined and calculated based on station observation data,and the related SST anomalies and atmospheric circulations are examined based on the Hadley Centre SST data and the NCEP/NCAR reanalysis data for winters of1978/1979–2017/2018.The results indicate that the CRSI weather with more CRSI days is featured with both decreased temperature and increased winter precipitation over southern China.The SSTs over both the EP and the southeastern Indian Ocean(SIO)are closely related to the CRSI days in southern China with correlation coefficients of-0.29 and 0.39,significant at the 90%and 95%confidence levels,respectively.The SST over EP affects significantly air temperature,as revealed by previous studies,with cooler EP closely related to the deepened East Asian trough,which benefits stronger East Asian winter monsoon(EAWM)and lower air temperature in southern China.Nevertheless,this paper discovers that the SST over SIO affects precipitation of southern China,with a correlation coefficient of 0.42,significant at the 99%confidence level,with warmer SIO correlated with deepened southern branch trough(SBT)and strengthened western North Pacific anomalous anticyclone(WNPAC),favoring more water vapor convergence and enhanced precipitation in southern China.Given presence of La Ni?a in both winters,compared to the winter of 2020/2021,the winter of 2021/2022 witnessed more CRSI days,perhaps due to the warmer SIO.展开更多
The response of the upper-ocean temperatures and currents in the tropical Pacific to the spatial distribution of chlorophyll-a and its seasonal cycle is investigated using a coupled atmosphere-ocean model and a stand-...The response of the upper-ocean temperatures and currents in the tropical Pacific to the spatial distribution of chlorophyll-a and its seasonal cycle is investigated using a coupled atmosphere-ocean model and a stand-alone oceanic general circulation model.The spatial distribution of chlorophyll-a significantly influences the mean state of models in the tropical Pacific.The annual mean SST in the eastern equatorial Pacific decreases accompanied by a shallow thermocline and stronger currents because of shallow penetration depth of solar radiation.Equatorial upwelling dominates the heat budget in that region.Atmosphere-ocean interaction processes can further amplify such changes. The seasonal cycle of chlorophyll-a can dramatically change ENSO period in the coupled model.After introducing the seasonal cycle of chlorophyll-a concentration,the peak of the power spectrum becomes broad,and longer periods(3 years) are found.These changes led to ENSO irregularities in the model. The increasing period is mainly due to the slow speed of Rossby waves,which are caused by the shallow mean thermocline in the northeastern Pacific.展开更多
Large-scale water transport is one of the key factors that affect sea surface temperature anomaly(SSTA) in the eastern equatorial Pacific(EEP).The relationship between the wave transport in the tropical Pacific an...Large-scale water transport is one of the key factors that affect sea surface temperature anomaly(SSTA) in the eastern equatorial Pacific(EEP).The relationship between the wave transport in the tropical Pacific and the SSTA in the EEP is examined by different methods,including band-pass filtering,period analysis,correlation analysis,significant analysis,and empirical orthogonal function(EOF) analysis.We have found that the eastward shift of the wave transport anomaly in the tropical Pacific,with a period of 2 a and enhancing the transport of warm waters from the western Pacific warm pool,precedes the increase of sea surface temperature(SST) in the EEP.The wave transport and the SSTA in the EEP have a maximum correlation of 0.65 with a time-lag of 6 months(transport variation precedes the temperature).The major periods(3.7 a and 2.45 a) of the wave transport variability,as revealed by the EOF analysis,appear to be consistent with the SSTA oscillation cycle in the EEP.Based on the first occurrence of a significant SSTA in the Ni?o 3 region(5°S–5°N,90°–150°W),two types of warm events are defined.The wave transport anomalies in two types present predominantly the west anomaly in the tropical Pacific,it is that the wave transport continues transport warm water from west to east before the onset of the warm event.The impact of wave-induced water transport on the SSTA in the EEP is confirmed by the heat flux of the wave transport.The wave transport exerts significant effect on the SSTA variability in the EEP and thus is not neglectable in the further studies.展开更多
The rainfall in North China during rainy sea-son (July and August (JA)) exhibits a strong interannual variability. In this study, the atmospheric circulation and SST anomalies associated with the interannual variation...The rainfall in North China during rainy sea-son (July and August (JA)) exhibits a strong interannual variability. In this study, the atmospheric circulation and SST anomalies associated with the interannual variation of JA North China rainfall are examined. It is found that on the interannual timescale, the JA North China rainfall is associ-ated with significant SST anomalies in the equatorial eastern Pacific, and the North China rainfall and SST anomaly in the equatorial eastern Pacific correspond to the similar variation of the upper-level westerly jet stream over East Asia. A pos-sible mechanism is proposed for the influence of the SST anomalies in the equatorial eastern Pacific on the North China rainfall.展开更多
With support of the National Natural Science Foundation of China,the research team directed by Prof.Tian Jun(田军)at the State Key Laboratory of Marine Geology,Tongji University,and Associate Prof.Liu ZhongHui(柳中晖)...With support of the National Natural Science Foundation of China,the research team directed by Prof.Tian Jun(田军)at the State Key Laboratory of Marine Geology,Tongji University,and Associate Prof.Liu ZhongHui(柳中晖)at the Department of Earth Sciences,The University of Hong Kong,recently reported that Eastern Equatorial Pacific cold tongue(CT)was only weakly developed to non-existent Figure EEP cold tongue development compared with other representative surface and subsurface records.before^4.3million years ago,which was published in Science Advances(2019,5:eaau6060).展开更多
文摘The vertical resolution of LICOM1.0 (LASG/IAP Climate System Ocean Model, version 1.0) is adjusted by increasing the level amount within the upper 150 m while keeping the total of levels. It is found that the eastern equatorial Pacific cold tongue is sensitive to the adjustment. Compared with the simulation of the original level scheme, the adjusting yields a more realistic structure of cold tongue extending from the coast of Peru to the equator, as well as a temperature minimum at Costa Rica coast, north of the cold tongue. In the original scheme experiment, the sharp heating by net surface heat flux at the beginning of spin-up leads to a great warm- ing in the eastern equatorial Pacific Ocean. The weak vertical advection due to a too thick mixed layer in the coarse vertical structure also accounts for the warm bias. The fact that most significant improvements of the upper 50 m temperature appear at the region of the thinnest mixed layer indicates the necessity of fine vertical resolution for the eastern equatorial Pacific Ocean. However, the westward extension of equatorial cold tongue, a defect in the original scheme, gets even more serious in the adjusting scheme due to the intensi- fied vertical velocity and hence vertical advection in the central-eastern equatorial Pacific Ocean.
基金The National Key R&D Program of China under contract No.2016YFA0602200the Basic Scientific Fund for National Public Research Institute of China under contract No.2016S03+3 种基金the grant of Qingdao National Laboratory for Marine Science and Technology under contract Nos 2017ASTCP-ES04 and QNLM20160RP0101the National Natural Science Foundation of China under contract No.41776019the Shanghai Natural Science Foundation under contract No.16ZR1416200the China-Korea Cooperation Project on Northwestern Pacific Climate Change and its Prediction。
文摘The sea surface temperature(SST)seasonal cycle in the eastern equatorial Pacific(EEP)plays an important role in the El Nino–Southern Oscillation(ENSO)phenomenon.However,the reasonable simulation of SST seasonal cycle in the EEP is still a challenge for climate models.In this paper,we evaluated the performance of 17 CMIP6 climate models in simulating the seasonal cycle in the EEP and compared them with 43 CMIP5 climate models.In general,only CESM2 and SAM0-UNICON are able to successfully capture the annual mean SST characteristics,and the results showed that CMIP6 models have no fundamental improvement in the model annual mean bias.For the seasonal cycle,14 out of 17 climate models are able to represent the major characteristics of the observed SST annual evolution.In spring,12 models capture the 1–2 months leading the eastern equatorial Pacific region 1(EP1;5°S–5°N,110°–85°W)against the eastern equatorial Pacific region 2(EP2;5°S–5°N,140°–110°W).In autumn,only two models,GISS-E2-G and SAM0-UNICON,correctly show that the EP1 and EP2 SSTs vary in phase.For the CMIP6 MME SST simulation in EP1,both the cold bias along the equator in the warm phase and the warm bias in the cold phase lead to a weaker annual SST cycle in the CGCMs,which is similar to the CMIP5 results.However,both the seasonal cold bias and warm bias are considerably decreased for CMIP6,which leads the annual SST cycle to more closely reflect the observation.For the CMIP6 MME SST simulation in EP2,the amplitude is similar to the observed value due to the quasi-constant cold bias throughout the year,although the cold bias is clearly improved after August compared with CMIP5 models.Overall,although SAM0-UNICON successfully captured the seasonal cycle characteristics in the EEP and the improvement from CMIP5 to CMIP6 in simulating EEP SST is clear,the fundamental climate models simulated biases still exist.
文摘Sea-surface temperature (SST) in the eastern, equatorial Pacific and rain days over China in summer are analysed using correlation moments that is proposed by author and principal component analysis(PCA). Occurrences of the strong rain-day anomalies over China are associated with extreme SSTs in some years. Areas significantly affected by the phenomena include North and Northeast China.
基金supported by the Postdoctoral Fellow ship given by the Japan Society for the Promotion of Sciencesupported by the Kyousei and Kakushin Projects of the ministry of Education, Culture,Sports, Science, and Technology of Japan, the Core Research for Evolutional Science and Technology of the Japan Science and Technology Agencythe National Basic Research Program of China (Grant No. 2006CB403606)
文摘Satellite observations of SSTs have revealed the existence of unstable waves in the equatorial eastern Pacific and Atlantic oceans. These waves have a 20-40-day periodicity with westward phase speeds of 0.4-0.6 m s^-1 and wavelengths of 1000-2000 km during boreal summer and fall. They are generally called tropical instability waves (TIWs). This study investigates TIWs simulated by a high-resolution coupled atmosphere-ocean general circulation model (AOGCM). The horizontal resolution of the model is 120 km in the atmosphere, and 30 km longitude by 20 km latitude in the ocean. Model simulations show good agreement with the observed main features associated with TIWs. The results of energetics analysis reveal that barotropic energy conversion is responsible for providing the main energy source for TIWs by extracting energy from the meridional shear of the climatological-mean equatorial currents in the mixed layer. This deeper and northward-extended wave activity appears to gain its energy through baroclinic conversion via buoyancy work, which further contributes to the asymmetric distribution of TIWs. It is estimated that the strong cooling effect induced by equatorial upwelling is partially (-30%-40%) offset by the equatorward heat flux due to TIWs in the eastern tropical Pacific during the seasons when TIWs are active. The atmospheric mixed layer just above the sea surface responds to the waves with enhanced or reduced vertical mixing. Furthermore, the changes in turbulent mixing feed back to sea surface evaporation, favoring the westward propagation of TIWs. The atmosphere to the south of the Equator also responds to TIWs in a similar way, although TIWs are much weaker south of the Equator.
基金supported by National Natural Science Foundation of China (49635190).
文摘Based on the reanalysis data of global 500hPa geopotential height (NCEP NCAR CDAS-1) and tropical Pacific SSTs, the characteristics of global subtropical highs and their response to tropical eastern Pacific SST are investigated. Results show that global subtropical highs respond to SST consistently. Subtropical high intensity correlates to the 3 months leading SST maximally. The relationship between SST and 500hPa height stands out in low latitudes. The time for 500hPa height reaching maximuxn correlation to SST is 2 months later in latitude of 10 degree and 9 months in latitude of 30 degree than equatorial zone. And the response of atmospheric circulation over extratropic performs as wave train, and the response is more significant in the condition of warmer SST. Persistence of SSTs and subtropical highs changes obviously from season to season. Minimum persistence of subtropical highs in September and October may relate to the low persistence of SSTs in August and September.
文摘-In this paper the variations of the sea surface temperature anomalies (SSTA) in the Equatorial Eastern Pacific are analysed. The results show that there are two peaks in the spectrum. One is the low frequency oscillation with a period of 3 - 5 years, and the other is the quasi-biennial oscillation. The former shows a westward migration in the warm episode of SSTA and the latter has the opposite trend. The El Nino events will be formed while the two frquency bands are in phase in the warming stage of SSTA in the Equatorial Eastern Pacific
基金Supported by the National Key Research and Development Program of China(No.2017YFA0604600)the Fundamental Research Funds for the Central Universities(No.2019B63014)National Natural Science Foundation of China(No.41676019)。
文摘Seasonal variations of the equatorial undercurrent(EUC) termination in the Eastern Pacific,and their mechanism were examined using the Estimating the Circulation and Climate of the Ocean,PhaseⅡ(ECCO2).The ECCO2 reproduced a weak and shallow eastward EUC east of the Galapagos Islands,with annual mean transport of half of EUC to the west of the Islands.The diagnosis of zonal momentum equation suggests that the zonal advection(nonlinear terms) drives the EUC beyond the Islands rather than the pressure gradient force.The EUC in the Far Eastern Pacific has the large st core velocity in boreal spring and the smallest one in boreal summer,and its volume transport exhibits two maxima in boreal spring and autumn.The seasonal variability of the EUC in the Eastern Pacific is dominated by the Kelvin and Rossby waves excited by the zonal winds anomalies in the central and Eastern Pacific that are associated with the seasonal relaxation or intensification of the trade wind.In the Far Eastern Pacific to the east of 120°W,the eastward propagation Kelvin waves play a dominate role in the seasonal cycle of the EUC,results in a semiannual fluctuation with double peaks in boreal spring and autumn.A construction of water mass budget suggests that approximately 24.1% of the EUC water east of 100°W has upwelled to the mixed layer by0.35 m/d.The estimated upwelling is stronge st during boreal autumn and weake st during boreal winter.It is also found that approximately 42.6% of the EUC turns westward to feed the south equatorial current(SEC),13.2% flows north of the equator,and 20.1% flows south of the equator,mainly contributing to Peru-Chile undercurrent.
基金Supported by the National Natural Science Foundation of China(42088101)Joint Open Project of KLME&CIC-FEMD,NUIST(KLME202212)。
文摘Low temperature together with snow/freezing rain is disastrous in winter over southern China.Previous studies suggest that this is related to the sea surface temperature(SST)anomalies,especially La Nina conditions,over the equatorial central–eastern Pacific Ocean(EP).In reality,however,La Nina episodes are not always accompanied by rainy/snowy/icy(CRSI)days in southern China,such as the case in winter 2020/2021.Is there any other factor that works jointly with the EP SST to affect the winter CRSI weather in southern China?To address this question,CRSI days are defined and calculated based on station observation data,and the related SST anomalies and atmospheric circulations are examined based on the Hadley Centre SST data and the NCEP/NCAR reanalysis data for winters of1978/1979–2017/2018.The results indicate that the CRSI weather with more CRSI days is featured with both decreased temperature and increased winter precipitation over southern China.The SSTs over both the EP and the southeastern Indian Ocean(SIO)are closely related to the CRSI days in southern China with correlation coefficients of-0.29 and 0.39,significant at the 90%and 95%confidence levels,respectively.The SST over EP affects significantly air temperature,as revealed by previous studies,with cooler EP closely related to the deepened East Asian trough,which benefits stronger East Asian winter monsoon(EAWM)and lower air temperature in southern China.Nevertheless,this paper discovers that the SST over SIO affects precipitation of southern China,with a correlation coefficient of 0.42,significant at the 99%confidence level,with warmer SIO correlated with deepened southern branch trough(SBT)and strengthened western North Pacific anomalous anticyclone(WNPAC),favoring more water vapor convergence and enhanced precipitation in southern China.Given presence of La Ni?a in both winters,compared to the winter of 2020/2021,the winter of 2021/2022 witnessed more CRSI days,perhaps due to the warmer SIO.
基金supported by the National Basic Research Program of China (also called 973 Program,Grant Nos.2010CB428904, 2007CB411806,2006CB403600)the National Natural Science Foundation of China under Grant Nos.40775054, 40906012.
文摘The response of the upper-ocean temperatures and currents in the tropical Pacific to the spatial distribution of chlorophyll-a and its seasonal cycle is investigated using a coupled atmosphere-ocean model and a stand-alone oceanic general circulation model.The spatial distribution of chlorophyll-a significantly influences the mean state of models in the tropical Pacific.The annual mean SST in the eastern equatorial Pacific decreases accompanied by a shallow thermocline and stronger currents because of shallow penetration depth of solar radiation.Equatorial upwelling dominates the heat budget in that region.Atmosphere-ocean interaction processes can further amplify such changes. The seasonal cycle of chlorophyll-a can dramatically change ENSO period in the coupled model.After introducing the seasonal cycle of chlorophyll-a concentration,the peak of the power spectrum becomes broad,and longer periods(3 years) are found.These changes led to ENSO irregularities in the model. The increasing period is mainly due to the slow speed of Rossby waves,which are caused by the shallow mean thermocline in the northeastern Pacific.
文摘Large-scale water transport is one of the key factors that affect sea surface temperature anomaly(SSTA) in the eastern equatorial Pacific(EEP).The relationship between the wave transport in the tropical Pacific and the SSTA in the EEP is examined by different methods,including band-pass filtering,period analysis,correlation analysis,significant analysis,and empirical orthogonal function(EOF) analysis.We have found that the eastward shift of the wave transport anomaly in the tropical Pacific,with a period of 2 a and enhancing the transport of warm waters from the western Pacific warm pool,precedes the increase of sea surface temperature(SST) in the EEP.The wave transport and the SSTA in the EEP have a maximum correlation of 0.65 with a time-lag of 6 months(transport variation precedes the temperature).The major periods(3.7 a and 2.45 a) of the wave transport variability,as revealed by the EOF analysis,appear to be consistent with the SSTA oscillation cycle in the EEP.Based on the first occurrence of a significant SSTA in the Ni?o 3 region(5°S–5°N,90°–150°W),two types of warm events are defined.The wave transport anomalies in two types present predominantly the west anomaly in the tropical Pacific,it is that the wave transport continues transport warm water from west to east before the onset of the warm event.The impact of wave-induced water transport on the SSTA in the EEP is confirmed by the heat flux of the wave transport.The wave transport exerts significant effect on the SSTA variability in the EEP and thus is not neglectable in the further studies.
基金supported by the Chinese Acad-emy of Sciences(Grant Nos.KZCX3-SW-221 and KZCX3-SW-218)the National Natural Science Foundation of China(Grant No.40221503).
文摘The rainfall in North China during rainy sea-son (July and August (JA)) exhibits a strong interannual variability. In this study, the atmospheric circulation and SST anomalies associated with the interannual variation of JA North China rainfall are examined. It is found that on the interannual timescale, the JA North China rainfall is associ-ated with significant SST anomalies in the equatorial eastern Pacific, and the North China rainfall and SST anomaly in the equatorial eastern Pacific correspond to the similar variation of the upper-level westerly jet stream over East Asia. A pos-sible mechanism is proposed for the influence of the SST anomalies in the equatorial eastern Pacific on the North China rainfall.
文摘With support of the National Natural Science Foundation of China,the research team directed by Prof.Tian Jun(田军)at the State Key Laboratory of Marine Geology,Tongji University,and Associate Prof.Liu ZhongHui(柳中晖)at the Department of Earth Sciences,The University of Hong Kong,recently reported that Eastern Equatorial Pacific cold tongue(CT)was only weakly developed to non-existent Figure EEP cold tongue development compared with other representative surface and subsurface records.before^4.3million years ago,which was published in Science Advances(2019,5:eaau6060).