Flasher origami pattern has been widely utilized to improve the stowage efficiency of deployable structures.Nevertheless,flasher origami cannot be folded fully flat,and they still have great potential for optimization...Flasher origami pattern has been widely utilized to improve the stowage efficiency of deployable structures.Nevertheless,flasher origami cannot be folded fully flat,and they still have great potential for optimization in terms of storage volume and folding creases.In this paper,a flat foldable equiangular spiral folding pattern inspired by the sunflower disk is introduced.Then,a parametric design method for this equiangular spiral crease diagram is introduced in detail.Subsequently,a kinematic model of the equiangular spiral folding pattern is established based on the kinematic equivalence between rigid origami and spherical linkages.A simulation of the developed model demonstrates that the equiangular spiral folding pattern can be folded flat.Using the folded ratio as an evaluation index,the calculated results and experiments show that the equiangular spiral crease pattern can yield fewer creases and improve stowage efficiency in comparison to flasher origami pattern.Equiangular spiral folding pattern can save a considerable amount of space and provide a new approach to spatially deployable structures.展开更多
For the metal spiral casing of water turbines, a new equivalent pipe algorithm is developed based on the idea of equiangu-lar spiral. Prototype tests and computations are carried out to investigate the hydraulic trans...For the metal spiral casing of water turbines, a new equivalent pipe algorithm is developed based on the idea of equiangu-lar spiral. Prototype tests and computations are carried out to investigate the hydraulic transient characteristics. The computation re-sults by using the new model are in a good agreement with the prototype test data with respect to the maximum speed of the tur-bine-generator unit, the maximum water hammer pressure in the spiral casing and the maximum vacuum in the draft tube. The propo-sed method is a significant improvement over the conventional algorithm with the accuracy increased and the error reduced by about 3%.展开更多
基金supported in part by National Key R&D Program of China(Grant No.2018YFB1304600)CAS Interdisciplinary Innovation Team(Grant No.JCTD-2018-11)the Natural Science Foundation of China(Grant No.51775541).
文摘Flasher origami pattern has been widely utilized to improve the stowage efficiency of deployable structures.Nevertheless,flasher origami cannot be folded fully flat,and they still have great potential for optimization in terms of storage volume and folding creases.In this paper,a flat foldable equiangular spiral folding pattern inspired by the sunflower disk is introduced.Then,a parametric design method for this equiangular spiral crease diagram is introduced in detail.Subsequently,a kinematic model of the equiangular spiral folding pattern is established based on the kinematic equivalence between rigid origami and spherical linkages.A simulation of the developed model demonstrates that the equiangular spiral folding pattern can be folded flat.Using the folded ratio as an evaluation index,the calculated results and experiments show that the equiangular spiral crease pattern can yield fewer creases and improve stowage efficiency in comparison to flasher origami pattern.Equiangular spiral folding pattern can save a considerable amount of space and provide a new approach to spatially deployable structures.
基金Project supported by the National Natural Science Foundation of China(Grant No.51179114)
文摘For the metal spiral casing of water turbines, a new equivalent pipe algorithm is developed based on the idea of equiangu-lar spiral. Prototype tests and computations are carried out to investigate the hydraulic transient characteristics. The computation re-sults by using the new model are in a good agreement with the prototype test data with respect to the maximum speed of the tur-bine-generator unit, the maximum water hammer pressure in the spiral casing and the maximum vacuum in the draft tube. The propo-sed method is a significant improvement over the conventional algorithm with the accuracy increased and the error reduced by about 3%.