Phase equilibrium conditions of gas hydrate in several systems were measured by the step-heating method using the cylindrical transparent sapphire cell device.The experimental data for pure CH4 or CO2+deionized water ...Phase equilibrium conditions of gas hydrate in several systems were measured by the step-heating method using the cylindrical transparent sapphire cell device.The experimental data for pure CH4 or CO2+deionized water systems showed good agreement with those in the literatures.This kind of method was then applied to CH4/CO2+sodium dodecyl sulfate(SDS)aqueous solution,CH4/CO2+SDS aqueous solution+silica sand,and(CH4+C2H6+C3H8)gas mixture+SDS aqueous solution systems,where SDS was added to increase the hydrate formation rate without evident influence on the equilibrium conditions.The feasibility and reliability of the step-heating method,especially for porous media systems and gas mixtures systems were determined.The experimental data for CO2+silica sand data shows that the equilibrium pressure will change significantly when the particle size of silica sand is less than 96μm.The formation equilibrium pressure was also measured by the reformation of hydrate.展开更多
Extraction of methane hydrate from subseafloor reservoir may potentially trigger seabed slides and induce subsidence.To address the problems,it is crucial to properly characterize the phase equilibrium condition of po...Extraction of methane hydrate from subseafloor reservoir may potentially trigger seabed slides and induce subsidence.To address the problems,it is crucial to properly characterize the phase equilibrium condition of pore hydrate and the shear strength of the soil.As one of the key constitutive components,the phase equilibrium condition enforces a constraint over pore gas pressure,temperature and unhydrated water content.Such a constraint,however,has been traditionally ignored in analyzing the mechanical behavior of hydrate-bearing soil.In this paper,a series of stepwise hydrate dissociation tests was performed,and the phase equilibrium condition of pore hydrate was determined,providing an effective way to evaluate the unhydrated water content during hydrate dissociation.Meanwhile,a series of direct shear tests was also conducted to explore the shear strength characteristics of the soil.It is shown that the shear strength of the hydrate-bearing soil can be significantly influenced by pore gas pressure,unhydrated water content,hydrate saturation and several other factors.In particular,the measured shear strength depends upon the initial water content of the sample,pointing to a potential problem that the shear strength could be wrongly determined if not properly interpreted.A shear strength criterion,which enforces the equilibrium condition of pore hydrate,is developed for hydrate-bearing soil,establishing a link between the equilibrium condition and the shear strength.The proposed equation describes well the shear strength characteristics of hydrate-bearing soils,remarkably unifying the effects of pore pressure,temperature,water content and hydrate saturation.展开更多
By the aid of the penalty function method, the equilibrium restriction conditions were introduced to the isoparametric hybrid finite element analysis, and the concrete application course of the penalty function method...By the aid of the penalty function method, the equilibrium restriction conditions were introduced to the isoparametric hybrid finite element analysis, and the concrete application course of the penalty function method in three-dimensional isoparametdc hybrid finite element was discussed. The separated penalty parameters method and the optimal hybrid element model with penalty balance were also presented. The penalty balance method can effectively refrain the parasitical stress on the premise of no additional degrees of freedom. The numeric experiment shows that the presented element not only is effective in improving greatly the numeric calculation precision of distorted grids but also has the universality.展开更多
Using the method of complex functions, we discuss the first fundamental problems of an anisotropic infinite elastic plane weakened by periodic collinear cracks and with periodic boundary loads on both sides of the cra...Using the method of complex functions, we discuss the first fundamental problems of an anisotropic infinite elastic plane weakened by periodic collinear cracks and with periodic boundary loads on both sides of the cracks. This problem was considered by Cai [Engineering Fracture Mechanics 46(1), 133-142 (1993)]. However, the previous method is imperfect. Therefore, the results are incorrect. Here, we revise the method and give a correct solution.展开更多
External confinement by fiber reinforced polymer (FRP) is an efficient technique to increase the bearing capacity and ductility of concrete. To better study the mechanical behavior of bidirectional FRP confined concre...External confinement by fiber reinforced polymer (FRP) is an efficient technique to increase the bearing capacity and ductility of concrete. To better study the mechanical behavior of bidirectional FRP confined concrete, the yield criterion of bidirectional FRP is presented based on the static equilibrium condition in this paper, and a model for calculating the bearing capacity of bidirectional FRP confined concrete is established. The model can capture the character of bidirectional FRP confined concrete. Effects of the confinement effect coefficient, the unconfined concrete strength and the material properties of FRP on bearing capacity are analyzed. Results show that each parameter has different effects on the bearing capacity of bidirectional FRP confined concrete.展开更多
Considering a solute transport problem deseribed by some algebraic and partial differentialequations with the presence of flux boundary conditions, we reduce the problem to a fixed point oneand use a priori estimates ...Considering a solute transport problem deseribed by some algebraic and partial differentialequations with the presence of flux boundary conditions, we reduce the problem to a fixed point oneand use a priori estimates to prove the existence and uniqueness of the global solutions.展开更多
In the present study,we investigate the anisotropic stellar solutions admitting Finch-Skea symmetry(viable and non-singular metric potentials)in the presence of some exotic matter fields,such as Bose-Einstein Condensa...In the present study,we investigate the anisotropic stellar solutions admitting Finch-Skea symmetry(viable and non-singular metric potentials)in the presence of some exotic matter fields,such as Bose-Einstein Condensate(BEC)dark matter,the Kalb-Ramond fully anisotropic rank-2 tensor field from the low-energy string theory effective action,and the gauge field imposing U(1)symmetry.Interior spacetime is matched with both Schwarzchild and Reissner-N?rdstrom vacuum spacetimes for BEC,KB,and gauge fields.In addition,we study the energy conditions,Equation of State(EoS),radial derivatives of energy density and anisotropic pressures,Tolman-OppenheimerVolkoff equilibrium condition,relativistic adiabatic index,sound speed,and surface redshift.Most of the aforementioned conditions are satisfied.Therefore,the solutions derived in the current study lie in the physically acceptable regime.展开更多
基金Supported by the National Natural Science Foundation of China (20676145, U0633003), the National Basic Research Program of China (2009CB219504) and the Program for New Century Excellent Talents in University of the State Ministry of Education.
文摘Phase equilibrium conditions of gas hydrate in several systems were measured by the step-heating method using the cylindrical transparent sapphire cell device.The experimental data for pure CH4 or CO2+deionized water systems showed good agreement with those in the literatures.This kind of method was then applied to CH4/CO2+sodium dodecyl sulfate(SDS)aqueous solution,CH4/CO2+SDS aqueous solution+silica sand,and(CH4+C2H6+C3H8)gas mixture+SDS aqueous solution systems,where SDS was added to increase the hydrate formation rate without evident influence on the equilibrium conditions.The feasibility and reliability of the step-heating method,especially for porous media systems and gas mixtures systems were determined.The experimental data for CO2+silica sand data shows that the equilibrium pressure will change significantly when the particle size of silica sand is less than 96μm.The formation equilibrium pressure was also measured by the reformation of hydrate.
基金This research was funded by the National Science Foundation of China(NSFC)(Grant Nos.51939011 and 42171135)Youth Innovation Promotion Association,Chinese Academy of Sciences(CAS)(Grant No.2020326),which are gratefully acknowledged.
文摘Extraction of methane hydrate from subseafloor reservoir may potentially trigger seabed slides and induce subsidence.To address the problems,it is crucial to properly characterize the phase equilibrium condition of pore hydrate and the shear strength of the soil.As one of the key constitutive components,the phase equilibrium condition enforces a constraint over pore gas pressure,temperature and unhydrated water content.Such a constraint,however,has been traditionally ignored in analyzing the mechanical behavior of hydrate-bearing soil.In this paper,a series of stepwise hydrate dissociation tests was performed,and the phase equilibrium condition of pore hydrate was determined,providing an effective way to evaluate the unhydrated water content during hydrate dissociation.Meanwhile,a series of direct shear tests was also conducted to explore the shear strength characteristics of the soil.It is shown that the shear strength of the hydrate-bearing soil can be significantly influenced by pore gas pressure,unhydrated water content,hydrate saturation and several other factors.In particular,the measured shear strength depends upon the initial water content of the sample,pointing to a potential problem that the shear strength could be wrongly determined if not properly interpreted.A shear strength criterion,which enforces the equilibrium condition of pore hydrate,is developed for hydrate-bearing soil,establishing a link between the equilibrium condition and the shear strength.The proposed equation describes well the shear strength characteristics of hydrate-bearing soils,remarkably unifying the effects of pore pressure,temperature,water content and hydrate saturation.
文摘By the aid of the penalty function method, the equilibrium restriction conditions were introduced to the isoparametric hybrid finite element analysis, and the concrete application course of the penalty function method in three-dimensional isoparametdc hybrid finite element was discussed. The separated penalty parameters method and the optimal hybrid element model with penalty balance were also presented. The penalty balance method can effectively refrain the parasitical stress on the premise of no additional degrees of freedom. The numeric experiment shows that the presented element not only is effective in improving greatly the numeric calculation precision of distorted grids but also has the universality.
文摘Using the method of complex functions, we discuss the first fundamental problems of an anisotropic infinite elastic plane weakened by periodic collinear cracks and with periodic boundary loads on both sides of the cracks. This problem was considered by Cai [Engineering Fracture Mechanics 46(1), 133-142 (1993)]. However, the previous method is imperfect. Therefore, the results are incorrect. Here, we revise the method and give a correct solution.
基金Sponsored by the National Natural Science Foundation of China(Grant No.50538060)the Excellent Young College Teacher Foundation of Anhui Province(Grant No.2009SQRZ081)
文摘External confinement by fiber reinforced polymer (FRP) is an efficient technique to increase the bearing capacity and ductility of concrete. To better study the mechanical behavior of bidirectional FRP confined concrete, the yield criterion of bidirectional FRP is presented based on the static equilibrium condition in this paper, and a model for calculating the bearing capacity of bidirectional FRP confined concrete is established. The model can capture the character of bidirectional FRP confined concrete. Effects of the confinement effect coefficient, the unconfined concrete strength and the material properties of FRP on bearing capacity are analyzed. Results show that each parameter has different effects on the bearing capacity of bidirectional FRP confined concrete.
基金The project support by National Science Foundation of China
文摘Considering a solute transport problem deseribed by some algebraic and partial differentialequations with the presence of flux boundary conditions, we reduce the problem to a fixed point oneand use a priori estimates to prove the existence and uniqueness of the global solutions.
基金National Board for Higher Mathematics(NBHM)under Department of Atomic Energy(DAE)Govt.of India for financial support to carry out the Research project No.:02011/3/2022 NBHM(R.P.)/R#D II/2152 Dt.14.02.2022Sokoliuk O.performed the work in frame of the"Mathematical modeling in interdisciplinary research of processes and systems based on intelligent supercomputer,grid and cloud technologies"program of the NAS of Ukraine。
文摘In the present study,we investigate the anisotropic stellar solutions admitting Finch-Skea symmetry(viable and non-singular metric potentials)in the presence of some exotic matter fields,such as Bose-Einstein Condensate(BEC)dark matter,the Kalb-Ramond fully anisotropic rank-2 tensor field from the low-energy string theory effective action,and the gauge field imposing U(1)symmetry.Interior spacetime is matched with both Schwarzchild and Reissner-N?rdstrom vacuum spacetimes for BEC,KB,and gauge fields.In addition,we study the energy conditions,Equation of State(EoS),radial derivatives of energy density and anisotropic pressures,Tolman-OppenheimerVolkoff equilibrium condition,relativistic adiabatic index,sound speed,and surface redshift.Most of the aforementioned conditions are satisfied.Therefore,the solutions derived in the current study lie in the physically acceptable regime.