Mixed rare earth nitrates (REi(NO3)3) in the aqueous solution was mixed with tri-n-butyl phosphate (TBP, (n-C4H9O)3PO) dissolved in kerosene for the formation of their corresponding complexes (REi(NO3)3...Mixed rare earth nitrates (REi(NO3)3) in the aqueous solution was mixed with tri-n-butyl phosphate (TBP, (n-C4H9O)3PO) dissolved in kerosene for the formation of their corresponding complexes (REi(NO3)3·ni(n-C4H9O)3PO) at 303 K. The effects of initial concentrations of both TBP and mixed rare earth nitrates on the equilibrium constants of their complex formations were investigated. The complexes were formed almost immediately after mixing. The simultaneous formations reached their chemical equilibria within a few minutes by shaking the mixture at 200 r/min. The chemical equilibrium constants of the complex formations were independent of the initial TBP concentrations. However, they were decreased by reducing the concentration of REi(NO3)3. All equilibrium constants of the simultaneous complex formations were less than 0.7, while the average molar ratio of TBP to REi(NO3)3 of the complexes varied between 1.0 and 1.6. The chemical equilibrium constant for the formation of La(NO3)3·(n-C4H9O)3PO was 0.09, while that of Dy(NO3)3·(n-C4H9O)3PO was 0.68. The ascending sequence of chemical equilibrium constants for the simultaneous formations was La, Ce, Pr, Nd, Eu, Y, Sm, Gd, and Dy.展开更多
The kinetics of ternary complex formation involving Cu(5-X-1, 10-phen) and threonine (CuAL, A=5-X-1, 10-phen; L=threonine or represented by O-N; X=NO_2, Cl, H, CH_3) has been studied by temperature-jump and stopped-fl...The kinetics of ternary complex formation involving Cu(5-X-1, 10-phen) and threonine (CuAL, A=5-X-1, 10-phen; L=threonine or represented by O-N; X=NO_2, Cl, H, CH_3) has been studied by temperature-jump and stopped-flow methods. The formation rate constants, k_f(M^(-1).s^(-1)), for the complexation reaction, CuA + LCuAL, are as follows; X=NO_2, 8.68×10~8; X=Cl, 7.13×10~8; X=H, 6.12×10~8; X=CH_3, 5.42×10~8. The rate constants for zwitterion attack are nil within experimental error. It has been found that a linear free energy relationship exists between the stability(logK_(CuAL)^(CuA) of the complexes CuAL and log kf as follows: IogK_(CuAL)^(CuA)=0.13 + 0.83 logk_f, r=0.99. It suggested that the formation rate governed the stability of the ternary complexes. The rates of formation of the ternary complexes increased with decreasing electron-donating property of the substituents. A linear relationship was found to exist as expressed by the following equation: log(k_f^R/k_F^O) = 0.097σ, r=0.96. A mechanism involves a rapid equilibrium between CuA and L followed by a slow ring closure of L.展开更多
Drug-receptor interaction plays an important role in a series of biological effects, such as cell pro- liferation, immune response, tumor metastasis, and drug delivery. Therefore, the research on drug-re- ceptor inter...Drug-receptor interaction plays an important role in a series of biological effects, such as cell pro- liferation, immune response, tumor metastasis, and drug delivery. Therefore, the research on drug-re- ceptor interaction is growing rapidly. The equilibrium dissociation constant (KD) is the basic parameter to evaluate the binding property of the drug-receptor. Thus, a variety of analytical methods have been established to determine the KD values, including radioligand binding assay, surface plasmon resonance method, fluorescence energy resonance transfer method, affinity chromatography, and isothermal ti- tration calorimetry. With the invention and innovation of new technology and analysis method, there is a deep exploration and comprehension about drug-receptor interaction. This review discusses the differ- ent methods of determining the KD values, and analyzes the applicability and the characteristic of each analytical method. Conclusively, the aim is to provide the guidance for researchers to utilize the most appropriate analytical tool to determine the KD values.展开更多
Ⅰ. INTRODUCTIONEsters of dithiophosphoric acid are a kind of excellent extractant for separating Co-Ni and Co-Mn. It was found that Co(Ⅱ) is easy to oxidize and to form the stable six-coordinated octahedral comple...Ⅰ. INTRODUCTIONEsters of dithiophosphoric acid are a kind of excellent extractant for separating Co-Ni and Co-Mn. It was found that Co(Ⅱ) is easy to oxidize and to form the stable six-coordinated octahedral complex Co[(RO)<sub>2</sub>PS<sub>2</sub>] during extraction process. And it made back-extraction process very difficult. It was found that pydridine is able to cause substitute-reduction reaction with Co[(RO)<sub>2</sub> PS<sub>2</sub>]<sub>3</sub> and to form Co[(RO)<sub>2</sub>PS<sub>2</sub>]<sub>2</sub>·2Py. It is展开更多
Phthalocyanine, because of its chemical structure similar to porphyrin and chlorophyll, easy synthesis, good stability to heat and light, has gained wide application in dyes, pigments, photoelectron materials, catalys...Phthalocyanine, because of its chemical structure similar to porphyrin and chlorophyll, easy synthesis, good stability to heat and light, has gained wide application in dyes, pigments, photoelectron materials, catalysts and photodynamic therapy, etc.展开更多
The thermodynamic properties of the most important NaOH-NaAI(OH)4-H20 system in Bayer process for alumina production were investigated. A theoretical model for calculating the equilibrium constant of gibbsite dissol...The thermodynamic properties of the most important NaOH-NaAI(OH)4-H20 system in Bayer process for alumina production were investigated. A theoretical model for calculating the equilibrium constant of gibbsite dissolved in sodium hydroxide solution was proposed. New Pitzer model parameters and mixing parameters for the system NaOH-NaAI(OH)4-H20 were yielded and tested in the temperature range of 298.15-373.15 K. The results show that the proposed model for calculating the equilibrium constant of gibbsite dissolution is applicable and accurate. The obtained Pitzer model parameters of β(0)(NaAl(OH)4)、β(1)(NaAl(OH)4)和CΦ(NaAl(OH)4),Al(OH)4 for NaAI(OH)4, the binary mixing parameter of θ(OH-Al(OH)4-) with OH-, and the ternary mixing parameter of ψ(Na+OH-Al(OH)4-) for AI(OH)4- with OH- and Na+ are temperature-dependent. The prediction of the equilibrium solubility of gibbsite dissolved in sodium hydroxide solution was feasible in the temperature range of 298.15-373.15 K.展开更多
A new method is proposed for determining the composition and stability constant of coordination compounds of the form M m R n ; it can be used to differentiate mono and poly nuclear coordination compounds. ...A new method is proposed for determining the composition and stability constant of coordination compounds of the form M m R n ; it can be used to differentiate mono and poly nuclear coordination compounds. The equation derived is lg( A i/(A max - A i) m)=n lg c′ R+lg( m·β(c M/A max ) ( m -1) ). The method is based on Bent French limited logarithm method. The demonstration of the proposed method has yielded correct results for Sc 3+ chlorophosphonazo Ⅲ system and Fe 3+ Chromazurol S system.展开更多
An idea on interfacial equilibrium-potential differences () which are generated for the extraction of univalent metal picrate (MPic) and divalent ones (MPic2) by crown ethers (L) into high-polar diluents was improved....An idea on interfacial equilibrium-potential differences () which are generated for the extraction of univalent metal picrate (MPic) and divalent ones (MPic2) by crown ethers (L) into high-polar diluents was improved. These potentials were clarified with some experimental extraction-data reported before on the M = Ag(I), Ca(II), Sr(II) and Ba(II) extraction with 18-crown-6 ether (18C6) and benzo-18C6 into 1,2-dichloroethane (DCE) and nitrobenzene (NB). Consequently, it was demonstrated that the? values from the extraction-experimentally obtained logKD,Pic ones are in agreement with or close to those calculated from charge balance equations in many cases, where the symbol, KD,Pic, denotes an individual distribution constant of Pic﹣ into the DCE or NB phase. Also, it was experimentally shown that extraction constants based on the overall extraction equilibria do not virtually contain the? terms in their functional expressions.展开更多
The equilibrium of Mg-S in Ni melt was studied by the method of vapour equilibrium in a sealed chamber.At 1530℃ the equilibrium constant of the reaction MgS_(s)=Mg_(Ni)+S_(Ni)and the activity interaction coefficient ...The equilibrium of Mg-S in Ni melt was studied by the method of vapour equilibrium in a sealed chamber.At 1530℃ the equilibrium constant of the reaction MgS_(s)=Mg_(Ni)+S_(Ni)and the activity interaction coefficient were determined as K_(MgS)=6.76×10^(-5)and e_S^(Mg)=-9.1.展开更多
The thermal analysis of precise thermophysical data for pure fluids from electronic databases is developed to investigate the molecular interaction mechanisms and parameters and the structural features of heterogeneit...The thermal analysis of precise thermophysical data for pure fluids from electronic databases is developed to investigate the molecular interaction mechanisms and parameters and the structural features of heterogeneities in fluids. The method is based on the series expansion of thermophysical values by powers of the monomer fraction density. Unlike the virial expansion by powers of the total density, the series expansion terms in this method directly reflect properties of the corresponding cluster fractions. The internal energy had been selected among thermophysical properties as the most informative for this method. The thermal analysis of its series expansion coefficients permits to estimate the temperature dependence of the pair bond parameters, the clusters’ bond energies and equilibrium constants, the structural transitions between dominating isomers of clusters. The application of method to different pure fluids, including noble and molecular gases with van der Waals and polar molecular interactions, brings unknown clusters’ characteristics for the fluids under investigation. The thermal analysis of the ordinary and heavy Water vapors points on no trivial isotopic effects. The unpredictable growth of the pair bond energy with temperature in Alkanes points on existence in hydrocarbons of some unknown molecular interaction forces in addition to dispersion forces.展开更多
The aim of this research is to apply the author’s original computer aided analysis of thermophysical data for pure fluids to noble gases to investigate the unknown aspects in their equilibrium thermal physics. The me...The aim of this research is to apply the author’s original computer aided analysis of thermophysical data for pure fluids to noble gases to investigate the unknown aspects in their equilibrium thermal physics. The methodology of the analysis is based on the potential energy density series expansion by the monomer fraction density. To discover the important details and particular features of pair atomic interactions in noble gases, the preprocessed and generalized experimental data have been taken from the US National Institute of Standards and Technology (NIST) online database. In this work the temperature range for analysis of the dimers’ bonding parameters is extended as compared to previous author’s works due to accounting for the specific temperature dependence of the repulsions’ contribution to the potential energy. The found temperature dependences of the pair interaction bond energies signal about the hindered rotation of atoms in dimers near the triple point due to the lack of rotational symmetry of their electronic outer shells. The discovered mutually correlated anomalous temperature dependences of the pair bond energy and the constant volume heat capacity in gaseous Helium require a special investigation of this remarkable phenomenon.展开更多
The dissociation limits of isotopic water molecules are derived for the ground state. The equilibrium geometries, the vibrational frequencies, the force constants and the dissociation energies for the ground states of...The dissociation limits of isotopic water molecules are derived for the ground state. The equilibrium geometries, the vibrational frequencies, the force constants and the dissociation energies for the ground states of all isotopic water molecules under the dipole electric fields from -0.05 a.u. to 0.05 a.u. are calculated using B3P86/6-311++G(3df,3pf). The results show that when the dipole electric fields change from -0.05 a.u. to 0.05 a.u., the bond length of H-O increases whereas the bond angle of H-O H decreases because of the charge transfer induced by the applied dipole electric field. The vibrational frequencies and the force constants of isotopic water molecules change under the influence of the strong external torque. The dissociation energies increase when the dipole electric fields change from -0.05 a.u. to 0.05 a.u. and the increased dissociation energies are in the order of H2O, HDO, HTO, D2O, DTO, and T2O under the same external electric fields.展开更多
文摘Mixed rare earth nitrates (REi(NO3)3) in the aqueous solution was mixed with tri-n-butyl phosphate (TBP, (n-C4H9O)3PO) dissolved in kerosene for the formation of their corresponding complexes (REi(NO3)3·ni(n-C4H9O)3PO) at 303 K. The effects of initial concentrations of both TBP and mixed rare earth nitrates on the equilibrium constants of their complex formations were investigated. The complexes were formed almost immediately after mixing. The simultaneous formations reached their chemical equilibria within a few minutes by shaking the mixture at 200 r/min. The chemical equilibrium constants of the complex formations were independent of the initial TBP concentrations. However, they were decreased by reducing the concentration of REi(NO3)3. All equilibrium constants of the simultaneous complex formations were less than 0.7, while the average molar ratio of TBP to REi(NO3)3 of the complexes varied between 1.0 and 1.6. The chemical equilibrium constant for the formation of La(NO3)3·(n-C4H9O)3PO was 0.09, while that of Dy(NO3)3·(n-C4H9O)3PO was 0.68. The ascending sequence of chemical equilibrium constants for the simultaneous formations was La, Ce, Pr, Nd, Eu, Y, Sm, Gd, and Dy.
文摘The kinetics of ternary complex formation involving Cu(5-X-1, 10-phen) and threonine (CuAL, A=5-X-1, 10-phen; L=threonine or represented by O-N; X=NO_2, Cl, H, CH_3) has been studied by temperature-jump and stopped-flow methods. The formation rate constants, k_f(M^(-1).s^(-1)), for the complexation reaction, CuA + LCuAL, are as follows; X=NO_2, 8.68×10~8; X=Cl, 7.13×10~8; X=H, 6.12×10~8; X=CH_3, 5.42×10~8. The rate constants for zwitterion attack are nil within experimental error. It has been found that a linear free energy relationship exists between the stability(logK_(CuAL)^(CuA) of the complexes CuAL and log kf as follows: IogK_(CuAL)^(CuA)=0.13 + 0.83 logk_f, r=0.99. It suggested that the formation rate governed the stability of the ternary complexes. The rates of formation of the ternary complexes increased with decreasing electron-donating property of the substituents. A linear relationship was found to exist as expressed by the following equation: log(k_f^R/k_F^O) = 0.097σ, r=0.96. A mechanism involves a rapid equilibrium between CuA and L followed by a slow ring closure of L.
文摘Drug-receptor interaction plays an important role in a series of biological effects, such as cell pro- liferation, immune response, tumor metastasis, and drug delivery. Therefore, the research on drug-re- ceptor interaction is growing rapidly. The equilibrium dissociation constant (KD) is the basic parameter to evaluate the binding property of the drug-receptor. Thus, a variety of analytical methods have been established to determine the KD values, including radioligand binding assay, surface plasmon resonance method, fluorescence energy resonance transfer method, affinity chromatography, and isothermal ti- tration calorimetry. With the invention and innovation of new technology and analysis method, there is a deep exploration and comprehension about drug-receptor interaction. This review discusses the differ- ent methods of determining the KD values, and analyzes the applicability and the characteristic of each analytical method. Conclusively, the aim is to provide the guidance for researchers to utilize the most appropriate analytical tool to determine the KD values.
基金Project supported by the National Natural Science Foundation of China
文摘Ⅰ. INTRODUCTIONEsters of dithiophosphoric acid are a kind of excellent extractant for separating Co-Ni and Co-Mn. It was found that Co(Ⅱ) is easy to oxidize and to form the stable six-coordinated octahedral complex Co[(RO)<sub>2</sub>PS<sub>2</sub>] during extraction process. And it made back-extraction process very difficult. It was found that pydridine is able to cause substitute-reduction reaction with Co[(RO)<sub>2</sub> PS<sub>2</sub>]<sub>3</sub> and to form Co[(RO)<sub>2</sub>PS<sub>2</sub>]<sub>2</sub>·2Py. It is
基金Project supported by the National Natural Science Foundation of China.
文摘Phthalocyanine, because of its chemical structure similar to porphyrin and chlorophyll, easy synthesis, good stability to heat and light, has gained wide application in dyes, pigments, photoelectron materials, catalysts and photodynamic therapy, etc.
基金Project (2005CB6237) supported by the National Basic Research Program of China
文摘The thermodynamic properties of the most important NaOH-NaAI(OH)4-H20 system in Bayer process for alumina production were investigated. A theoretical model for calculating the equilibrium constant of gibbsite dissolved in sodium hydroxide solution was proposed. New Pitzer model parameters and mixing parameters for the system NaOH-NaAI(OH)4-H20 were yielded and tested in the temperature range of 298.15-373.15 K. The results show that the proposed model for calculating the equilibrium constant of gibbsite dissolution is applicable and accurate. The obtained Pitzer model parameters of β(0)(NaAl(OH)4)、β(1)(NaAl(OH)4)和CΦ(NaAl(OH)4),Al(OH)4 for NaAI(OH)4, the binary mixing parameter of θ(OH-Al(OH)4-) with OH-, and the ternary mixing parameter of ψ(Na+OH-Al(OH)4-) for AI(OH)4- with OH- and Na+ are temperature-dependent. The prediction of the equilibrium solubility of gibbsite dissolved in sodium hydroxide solution was feasible in the temperature range of 298.15-373.15 K.
文摘A new method is proposed for determining the composition and stability constant of coordination compounds of the form M m R n ; it can be used to differentiate mono and poly nuclear coordination compounds. The equation derived is lg( A i/(A max - A i) m)=n lg c′ R+lg( m·β(c M/A max ) ( m -1) ). The method is based on Bent French limited logarithm method. The demonstration of the proposed method has yielded correct results for Sc 3+ chlorophosphonazo Ⅲ system and Fe 3+ Chromazurol S system.
文摘An idea on interfacial equilibrium-potential differences () which are generated for the extraction of univalent metal picrate (MPic) and divalent ones (MPic2) by crown ethers (L) into high-polar diluents was improved. These potentials were clarified with some experimental extraction-data reported before on the M = Ag(I), Ca(II), Sr(II) and Ba(II) extraction with 18-crown-6 ether (18C6) and benzo-18C6 into 1,2-dichloroethane (DCE) and nitrobenzene (NB). Consequently, it was demonstrated that the? values from the extraction-experimentally obtained logKD,Pic ones are in agreement with or close to those calculated from charge balance equations in many cases, where the symbol, KD,Pic, denotes an individual distribution constant of Pic﹣ into the DCE or NB phase. Also, it was experimentally shown that extraction constants based on the overall extraction equilibria do not virtually contain the? terms in their functional expressions.
文摘The equilibrium of Mg-S in Ni melt was studied by the method of vapour equilibrium in a sealed chamber.At 1530℃ the equilibrium constant of the reaction MgS_(s)=Mg_(Ni)+S_(Ni)and the activity interaction coefficient were determined as K_(MgS)=6.76×10^(-5)and e_S^(Mg)=-9.1.
文摘The thermal analysis of precise thermophysical data for pure fluids from electronic databases is developed to investigate the molecular interaction mechanisms and parameters and the structural features of heterogeneities in fluids. The method is based on the series expansion of thermophysical values by powers of the monomer fraction density. Unlike the virial expansion by powers of the total density, the series expansion terms in this method directly reflect properties of the corresponding cluster fractions. The internal energy had been selected among thermophysical properties as the most informative for this method. The thermal analysis of its series expansion coefficients permits to estimate the temperature dependence of the pair bond parameters, the clusters’ bond energies and equilibrium constants, the structural transitions between dominating isomers of clusters. The application of method to different pure fluids, including noble and molecular gases with van der Waals and polar molecular interactions, brings unknown clusters’ characteristics for the fluids under investigation. The thermal analysis of the ordinary and heavy Water vapors points on no trivial isotopic effects. The unpredictable growth of the pair bond energy with temperature in Alkanes points on existence in hydrocarbons of some unknown molecular interaction forces in addition to dispersion forces.
文摘The aim of this research is to apply the author’s original computer aided analysis of thermophysical data for pure fluids to noble gases to investigate the unknown aspects in their equilibrium thermal physics. The methodology of the analysis is based on the potential energy density series expansion by the monomer fraction density. To discover the important details and particular features of pair atomic interactions in noble gases, the preprocessed and generalized experimental data have been taken from the US National Institute of Standards and Technology (NIST) online database. In this work the temperature range for analysis of the dimers’ bonding parameters is extended as compared to previous author’s works due to accounting for the specific temperature dependence of the repulsions’ contribution to the potential energy. The found temperature dependences of the pair interaction bond energies signal about the hindered rotation of atoms in dimers near the triple point due to the lack of rotational symmetry of their electronic outer shells. The discovered mutually correlated anomalous temperature dependences of the pair bond energy and the constant volume heat capacity in gaseous Helium require a special investigation of this remarkable phenomenon.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10676022)
文摘The dissociation limits of isotopic water molecules are derived for the ground state. The equilibrium geometries, the vibrational frequencies, the force constants and the dissociation energies for the ground states of all isotopic water molecules under the dipole electric fields from -0.05 a.u. to 0.05 a.u. are calculated using B3P86/6-311++G(3df,3pf). The results show that when the dipole electric fields change from -0.05 a.u. to 0.05 a.u., the bond length of H-O increases whereas the bond angle of H-O H decreases because of the charge transfer induced by the applied dipole electric field. The vibrational frequencies and the force constants of isotopic water molecules change under the influence of the strong external torque. The dissociation energies increase when the dipole electric fields change from -0.05 a.u. to 0.05 a.u. and the increased dissociation energies are in the order of H2O, HDO, HTO, D2O, DTO, and T2O under the same external electric fields.