Fuel cell using borohydride as the fuel has received much attention. AB5-type hydrogen storage alloy used as the anodic material instead of noble metals has been investigated. In order to restrain the generation of hy...Fuel cell using borohydride as the fuel has received much attention. AB5-type hydrogen storage alloy used as the anodic material instead of noble metals has been investigated. In order to restrain the generation of hydrogen and enhance the utilization of borohydride, Ti/Zr metal powders has been added into the parent LmNi4.78Mn0.22 (where Lm is La-richened mischmetal) alloy (LNM) by ball milling and heat treatment methods. It is found that the addition of Ti/Zr metal powders lowers the electrochemical catalytic activity of the electrodes, at the same time, restrains the generation of hydrogen and enhances the utilization of the fuel. All the results show that the hydrogen generation rate or the utilization of the fuel is directly relative to the electrochemical catalytic activity or the discharge capability of the electrodes. The utilization of the fuel increases with discharge current density. It is very important to find a balance between the discharge capability and the utilization of the fuel.展开更多
The electrocatalytic properties of hydrogen storage alloy(HSA) MlNi3.65Co0.85Al0.3Mn0.3 substituting Pt as anode electrocatalyst of PEMFC was investigated. It is found that, after being optimized, the electrocatalyt...The electrocatalytic properties of hydrogen storage alloy(HSA) MlNi3.65Co0.85Al0.3Mn0.3 substituting Pt as anode electrocatalyst of PEMFC was investigated. It is found that, after being optimized, the electrocatalytic abilities of the HSA is reasonably good, the current density of the HSA anode membrane and electrode assembly(MEA) reaches 168 mA/cm2 at 0.5 V and 232.4 mA/cm2 at 0.2 V, and its power density reaches the maximum value of 84 mW/cm2. The influence of operating temperature and hydrogen pressure on the electrocatalytic behavior of HSA anode MEA is also discussed. At 60 ℃ under 2.02×105 Pa H2, the HSA anode shows the best electrochemical properties.展开更多
Efficient capture,safe storage and release of tritium from the international thermonuclear experimental reactor(ITER) reaction exhaust gas is a perplexing problem,and the development of an efficient tritium-getter mat...Efficient capture,safe storage and release of tritium from the international thermonuclear experimental reactor(ITER) reaction exhaust gas is a perplexing problem,and the development of an efficient tritium-getter material with ultra-low hydrogenation equilibrium pressure is considered as a reliable way.In this work,Zr_(2)Co alloy was selected as a tritium-getter material and prepared through induction levitation melting.Fundamental performance test results show that Zr_(2)Co exhibits an ultra-low hydrogenation equilibrium pressure of 3.22 × 10^(-6) Pa at 25℃ and excellent hydriding kinetics under a low hydrogen pressure of 0.005 MPa.Interestingly,unique phase transition behaviors were presented in Zr_(2)Co-H system.Specifically,Zr_(2)CoH_(5) formed by Zr_(2)Co hydrogenated at room temperature is initially decomposed into ZrH_(2) and ZrCoH_(3) at200 ℃.With the temperature increasing to 350 ℃,ZrCoH_(3)is dehydrogenated to ZrCo,and then ZrCo further reacts with ZrH_(2) at 650 ℃ to reform Zr_(2)Co and hydrogen.Among the staged phase transition pathways during dehydrogenation,the decomposition of Zr_(2)CoH_(5) occurs preferentially,which is well accordance with both the smallest reaction energy barrier and the maximum reaction spontaneity that are determined respectively from kinetics activation energy and thermodynamics Gibbs free energy.Furthermore,first principles calculation results indicate that the stronger binding of hydrogen in interstitial environments of ZrCoH_(3)and ZrH_(2) triggers the hydrogen-stabilized phase transformation of Zr_(2)CoH_(5).The unique phase transition mechanisms in Zr_(2)Co-H system can shed light on the further exploration and regulation of analogous staged phase transition of hydrogen storage materials.展开更多
In this study, carbon nanotubes (CNTs) were mixed with ABs-type hydrogen storage alloy (HSA), as catalyst for an anode in a direct borohydride fuel cell (DBFC). As comparision, a series of traditional carbon mat...In this study, carbon nanotubes (CNTs) were mixed with ABs-type hydrogen storage alloy (HSA), as catalyst for an anode in a direct borohydride fuel cell (DBFC). As comparision, a series of traditional carbon materials, such as acetylene black, Vulcan XC-72R, and super activated carbon (SAC) were also employed. Electrochemical measurements showed that the electrocatalytic activity of HSA was improved greatly by CNTs. The current density of the DI3FC employing the HSA/CNTs catalytic anode could reach 1550 mA.cm-2 (at -0.6 V vs the EIg/HgO electrode) and the maximum power density of 65 mW.cm-2 for this cell could be achieved at room temperature. Furthermore, the life time test lasting for 60 h showed that the cell displayed a good stability.展开更多
Mg-based metal hydrides are promising as hydrogen storage materials for fuel ce ll application. In this work,Mg2FeH6 complex hydride phase was synthesized by controlled reactive ball milling of 2Mg-Fe (atomic ratio)...Mg-based metal hydrides are promising as hydrogen storage materials for fuel ce ll application. In this work,Mg2FeH6 complex hydride phase was synthesized by controlled reactive ball milling of 2Mg-Fe (atomic ratio) powder mixture in H2. Mg2FeH6 is confirmed to be formed via the following three stages: form ation of MgH2 via the reaction of Mg with H2,incubation stage and formation of Mg2FeH6 by reaction of fully refined MgH2 and Fe. The incubation stage is characterized by no traces of Mg or hydride crystalline phase by XRD. On the other hand,Mg is observed uniformly distributed in the milled powder by SEM-E DS. Also,almost the same amount of H2 as the first stage is detected stored i n the powders of the second stage by DSC and TGA.展开更多
Rare earth-based superlattice alloys have great potential for gaseous hydrogen storage,as well as successful application as nickel-metal hydride batteries anodes.In this work,Y substitution was carried out to adjust t...Rare earth-based superlattice alloys have great potential for gaseous hydrogen storage,as well as successful application as nickel-metal hydride batteries anodes.In this work,Y substitution was carried out to adjust the gaseous hydrogen storage properties of A_(2)B_(7)-type La_(0.7)Mg_(0.3)Ni_(3.5)alloys.The results indicate a multiphase structure in the alloys comprised of the main rhombohedral Gd_(2)Co_(7)and PuNi_(3)phases,with a small amount of CaCu_(5)phase.Moreover,the Y substitution results in higher abundance of the Gd_(2)Co_(7)phase.The alloy La_(0.42)Y_(0.28)Mg_(0.3)Ni_(3.5)exhibits a hydrogen storage cap acity of 1.55 wt%at 298 K and a desorption plateau pressure of 0.244 MPa.In addition,this alloy demonstrates a stable cycle life by a capacity retention of 94.2%after 50 cycles,with the main capacity degradation occurring during the initial 20 cycles.This work accentuates the potential of the La-Y-Mg-Ni-based superlattice alloys for applications in solid-state hydrogen storage.展开更多
Reactive mechanical alloying(RMA)was carried out in a planetary ball mill for the synthesis of ternary hydride Mg2FeH6 for hydrogen storage.The formation mechanism of Mg2FeH6 in RMA process and the sorption properties...Reactive mechanical alloying(RMA)was carried out in a planetary ball mill for the synthesis of ternary hydride Mg2FeH6 for hydrogen storage.The formation mechanism of Mg2FeH6 in RMA process and the sorption properties of the products were investigated.The results show that Mg2FeH6 has a yield ratio around 80%,and a grain size below 10 nm in the powder synthesized by milling 3Mg+Fe mixture for 150 h under the hydrogen pressure of 1 MPa.The synthesized powder possesses a high hydrogen capacity and good sorption kinetics,and absorbs 4.42%(mass fraction)of hydrogen within 200 s at 623 K under the hydrogen pressure of 4.0 MPa.In releasing hydrogen at 653 K under 0.1 MPa,it desorbs 4.43%(mass fraction)of hydrogen within 2 000 s.The addition of Ti increases the hydrogen desorption rate of the complex in the initial 120 s of the desorption process.展开更多
Nanostructured Mg–Ni alloy with the particle size in the range of 40–50 nm was synthesized by the thermal decomposition of bipyridyl complexes of Mg and Ni metals at 773 K for 24 h under dry argon gas ambient. The a...Nanostructured Mg–Ni alloy with the particle size in the range of 40–50 nm was synthesized by the thermal decomposition of bipyridyl complexes of Mg and Ni metals at 773 K for 24 h under dry argon gas ambient. The as-prepared nano-alloy was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) for compositional and structural analysis. The alloy exhibited superior hydrogen absorption and desorption behavior with 3.2 wt% absorption within 1 min at 573 K and about 3 wt% desorption within 5–10 min at 573 K. This favorable behavior of Mg–Ni compound for the hydrogen storage is due to the specific nanostructure of the material. The low activation energy values and favorable thermodynamics indicate that the prepared Mg–Ni alloy is an attracting material for hydrogen storage applications.展开更多
文摘Fuel cell using borohydride as the fuel has received much attention. AB5-type hydrogen storage alloy used as the anodic material instead of noble metals has been investigated. In order to restrain the generation of hydrogen and enhance the utilization of borohydride, Ti/Zr metal powders has been added into the parent LmNi4.78Mn0.22 (where Lm is La-richened mischmetal) alloy (LNM) by ball milling and heat treatment methods. It is found that the addition of Ti/Zr metal powders lowers the electrochemical catalytic activity of the electrodes, at the same time, restrains the generation of hydrogen and enhances the utilization of the fuel. All the results show that the hydrogen generation rate or the utilization of the fuel is directly relative to the electrochemical catalytic activity or the discharge capability of the electrodes. The utilization of the fuel increases with discharge current density. It is very important to find a balance between the discharge capability and the utilization of the fuel.
文摘The electrocatalytic properties of hydrogen storage alloy(HSA) MlNi3.65Co0.85Al0.3Mn0.3 substituting Pt as anode electrocatalyst of PEMFC was investigated. It is found that, after being optimized, the electrocatalytic abilities of the HSA is reasonably good, the current density of the HSA anode membrane and electrode assembly(MEA) reaches 168 mA/cm2 at 0.5 V and 232.4 mA/cm2 at 0.2 V, and its power density reaches the maximum value of 84 mW/cm2. The influence of operating temperature and hydrogen pressure on the electrocatalytic behavior of HSA anode MEA is also discussed. At 60 ℃ under 2.02×105 Pa H2, the HSA anode shows the best electrochemical properties.
基金financially supported by the National Key Research and Development Program of China (No.2022YFE03170002)the National Natural Science Foundation of China (Nos.52071286 and U2030208)。
文摘Efficient capture,safe storage and release of tritium from the international thermonuclear experimental reactor(ITER) reaction exhaust gas is a perplexing problem,and the development of an efficient tritium-getter material with ultra-low hydrogenation equilibrium pressure is considered as a reliable way.In this work,Zr_(2)Co alloy was selected as a tritium-getter material and prepared through induction levitation melting.Fundamental performance test results show that Zr_(2)Co exhibits an ultra-low hydrogenation equilibrium pressure of 3.22 × 10^(-6) Pa at 25℃ and excellent hydriding kinetics under a low hydrogen pressure of 0.005 MPa.Interestingly,unique phase transition behaviors were presented in Zr_(2)Co-H system.Specifically,Zr_(2)CoH_(5) formed by Zr_(2)Co hydrogenated at room temperature is initially decomposed into ZrH_(2) and ZrCoH_(3) at200 ℃.With the temperature increasing to 350 ℃,ZrCoH_(3)is dehydrogenated to ZrCo,and then ZrCo further reacts with ZrH_(2) at 650 ℃ to reform Zr_(2)Co and hydrogen.Among the staged phase transition pathways during dehydrogenation,the decomposition of Zr_(2)CoH_(5) occurs preferentially,which is well accordance with both the smallest reaction energy barrier and the maximum reaction spontaneity that are determined respectively from kinetics activation energy and thermodynamics Gibbs free energy.Furthermore,first principles calculation results indicate that the stronger binding of hydrogen in interstitial environments of ZrCoH_(3)and ZrH_(2) triggers the hydrogen-stabilized phase transformation of Zr_(2)CoH_(5).The unique phase transition mechanisms in Zr_(2)Co-H system can shed light on the further exploration and regulation of analogous staged phase transition of hydrogen storage materials.
文摘In this study, carbon nanotubes (CNTs) were mixed with ABs-type hydrogen storage alloy (HSA), as catalyst for an anode in a direct borohydride fuel cell (DBFC). As comparision, a series of traditional carbon materials, such as acetylene black, Vulcan XC-72R, and super activated carbon (SAC) were also employed. Electrochemical measurements showed that the electrocatalytic activity of HSA was improved greatly by CNTs. The current density of the DI3FC employing the HSA/CNTs catalytic anode could reach 1550 mA.cm-2 (at -0.6 V vs the EIg/HgO electrode) and the maximum power density of 65 mW.cm-2 for this cell could be achieved at room temperature. Furthermore, the life time test lasting for 60 h showed that the cell displayed a good stability.
文摘Mg-based metal hydrides are promising as hydrogen storage materials for fuel ce ll application. In this work,Mg2FeH6 complex hydride phase was synthesized by controlled reactive ball milling of 2Mg-Fe (atomic ratio) powder mixture in H2. Mg2FeH6 is confirmed to be formed via the following three stages: form ation of MgH2 via the reaction of Mg with H2,incubation stage and formation of Mg2FeH6 by reaction of fully refined MgH2 and Fe. The incubation stage is characterized by no traces of Mg or hydride crystalline phase by XRD. On the other hand,Mg is observed uniformly distributed in the milled powder by SEM-E DS. Also,almost the same amount of H2 as the first stage is detected stored i n the powders of the second stage by DSC and TGA.
基金Project supported by the National Natural Science Foundation of China(52271214,51831009)。
文摘Rare earth-based superlattice alloys have great potential for gaseous hydrogen storage,as well as successful application as nickel-metal hydride batteries anodes.In this work,Y substitution was carried out to adjust the gaseous hydrogen storage properties of A_(2)B_(7)-type La_(0.7)Mg_(0.3)Ni_(3.5)alloys.The results indicate a multiphase structure in the alloys comprised of the main rhombohedral Gd_(2)Co_(7)and PuNi_(3)phases,with a small amount of CaCu_(5)phase.Moreover,the Y substitution results in higher abundance of the Gd_(2)Co_(7)phase.The alloy La_(0.42)Y_(0.28)Mg_(0.3)Ni_(3.5)exhibits a hydrogen storage cap acity of 1.55 wt%at 298 K and a desorption plateau pressure of 0.244 MPa.In addition,this alloy demonstrates a stable cycle life by a capacity retention of 94.2%after 50 cycles,with the main capacity degradation occurring during the initial 20 cycles.This work accentuates the potential of the La-Y-Mg-Ni-based superlattice alloys for applications in solid-state hydrogen storage.
基金Project(50574105)supported by the National Natural Science Foundation of ChinaProject(10JJ2037)supported by Hunan Provincial Natural Science Foundation of ChinaProject(200902)supported by Innovation Foundation of State Key Laboratory for Powder Metallurgy,Central South University,China
文摘Reactive mechanical alloying(RMA)was carried out in a planetary ball mill for the synthesis of ternary hydride Mg2FeH6 for hydrogen storage.The formation mechanism of Mg2FeH6 in RMA process and the sorption properties of the products were investigated.The results show that Mg2FeH6 has a yield ratio around 80%,and a grain size below 10 nm in the powder synthesized by milling 3Mg+Fe mixture for 150 h under the hydrogen pressure of 1 MPa.The synthesized powder possesses a high hydrogen capacity and good sorption kinetics,and absorbs 4.42%(mass fraction)of hydrogen within 200 s at 623 K under the hydrogen pressure of 4.0 MPa.In releasing hydrogen at 653 K under 0.1 MPa,it desorbs 4.43%(mass fraction)of hydrogen within 2 000 s.The addition of Ti increases the hydrogen desorption rate of the complex in the initial 120 s of the desorption process.
基金supported by Higher Education Commission (HEC), Islamabad, Pakistan under PhD indigenous-5000 Fellowship Program
文摘Nanostructured Mg–Ni alloy with the particle size in the range of 40–50 nm was synthesized by the thermal decomposition of bipyridyl complexes of Mg and Ni metals at 773 K for 24 h under dry argon gas ambient. The as-prepared nano-alloy was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) for compositional and structural analysis. The alloy exhibited superior hydrogen absorption and desorption behavior with 3.2 wt% absorption within 1 min at 573 K and about 3 wt% desorption within 5–10 min at 573 K. This favorable behavior of Mg–Ni compound for the hydrogen storage is due to the specific nanostructure of the material. The low activation energy values and favorable thermodynamics indicate that the prepared Mg–Ni alloy is an attracting material for hydrogen storage applications.