By using an existence theorems of maximal elements for a family of set-valued mappings in G-convex spaces due to the author, some new nonempty intersection theorems for a family of set-valued mappings were established...By using an existence theorems of maximal elements for a family of set-valued mappings in G-convex spaces due to the author, some new nonempty intersection theorems for a family of set-valued mappings were established in noncompact product G-convex spaces. As applications, some equilibrium existence theorems for a system of generalized vector equilibrium problems were proved in noncompact product G-convex spaces. These theorems unify, improve and generalize some important known results in literature.展开更多
By applying a maximal element theorem on product FC-space due to author, some new equilibrium existence theorems for generalized games with fuzzy constraint correspondences are proved in FC-spaces. By using these equi...By applying a maximal element theorem on product FC-space due to author, some new equilibrium existence theorems for generalized games with fuzzy constraint correspondences are proved in FC-spaces. By using these equilibrium existence theorems, some new existence theorems of solutions for the system of generalized vector quasi-equilibrium problems are established in noncompact product FC-spaces. These results improve and generalize some recent results in literature to product FC-spaces without any convexity structure.展开更多
The purpose of this paper is to present a new iterative scheme for finding a common solution of the generalized mixed equilibrium problems with an infinite family of inverse strongly monotone mappings and the fixed po...The purpose of this paper is to present a new iterative scheme for finding a common solution of the generalized mixed equilibrium problems with an infinite family of inverse strongly monotone mappings and the fixed point problems of demimetric mappings under nonlinear transformations in Banach spaces. Applications are also included. The results in this paper are the extension and improvement of the recent results in the literature.展开更多
By employing a fixed point theorem due to Ding, Park and Jung, some existence theorems of solutions for equilibrium problems with lower and upper bounds are proved in noncompact topological spaces. These results furth...By employing a fixed point theorem due to Ding, Park and Jung, some existence theorems of solutions for equilibrium problems with lower and upper bounds are proved in noncompact topological spaces. These results further answer the open problem raised by Isac, Sehgal and Singh under much weaker assumptions.展开更多
By using an existence theorems of maximal elements for a family of set-valued mappings in G-convex spaces due to the author, some new nonempty intersection theorems for a family of set-valued mappings were established...By using an existence theorems of maximal elements for a family of set-valued mappings in G-convex spaces due to the author, some new nonempty intersection theorems for a family of set-valued mappings were established in noncompact product G-convex spaces. As applications, some equilibrium existence theorems for a system of generalized vector equilibrium problems were proved in noncompact product G-convex spaces. These theorems unify, improve and generalize some important known results in literature.展开更多
The recently proposed method of our research group named as directional Lyapunov exponents(DLEs) is presented. Then, DLEs are used to analyze the eigenstructure of the output phase space around the equilibrium point...The recently proposed method of our research group named as directional Lyapunov exponents(DLEs) is presented. Then, DLEs are used to analyze the eigenstructure of the output phase space around the equilibrium points. Finally, the impacts of the superlattice parameter changes on the characteristics of the output chaotic signal are analyzed. The experimental results show that parameter changes of the superlattice will affect the eigenstructure around the equilibrium points in the output phase space, and DLEs are sensitive to these changes.展开更多
By applying a new fixed point theorem due to the author, some new equilibrium existence theorems of quasi-equilibrium problems are proved in noncompact generalized convex spaces. These theorems improve and generalize ...By applying a new fixed point theorem due to the author, some new equilibrium existence theorems of quasi-equilibrium problems are proved in noncompact generalized convex spaces. These theorems improve and generalize a number of important known results in recent literature.展开更多
Some classes of generalized vector quasi-equilibrium problems ( in short, GVQEP) are introduced and studied in locally G-convex spaces which includes most of generalized vector equilibrium problems; generalized vector...Some classes of generalized vector quasi-equilibrium problems ( in short, GVQEP) are introduced and studied in locally G-convex spaces which includes most of generalized vector equilibrium problems; generalized vector variational inequality problems, quasi-equilibrium problems and quasi-variational inequality problems as special cases. First, an equilibrium existence theorem for one person games is proved in locally G-convex spaces.. As applications, some new existence theorems of solutions for the GVQEP are established in noncompact locally G-convex spaces. These results and argument methods are new and completely different from that in recent literature.展开更多
A system of generalized mixed equilibrium-like problems is introduced and the existence of its solutions is shown by using the auxiliary principle technique in Hilbert spaces.
A new system of generalized mixed equilibrium problems (SGMEPs) involving generalized mixed variational-like inequality problems is introduced and studied in reflexive Banach spaces. A system of auxiliary generalize...A new system of generalized mixed equilibrium problems (SGMEPs) involving generalized mixed variational-like inequality problems is introduced and studied in reflexive Banach spaces. A system of auxiliary generalized mixed equilibrium problems (SAGMEPs) for solving the SGMEPs is first introduced. Existence and uniqueness of the solutions to the SAGMEPs is proved under quite mild assumptions without any coercive conditions in reflexive Banach spaces. Using the auxiliary principle technique, a new iterative algorithm for solving the SGMEPs is proposed and analyzed. Strong convergence of the iterative sequences generated by the algorithm is also proved under quite mild assumptions without any coercive conditions. These results improve, unify, and generalize some recent results in this field.展开更多
A new system of generalized mixed implicit equilibrium problems is introduced and studied in Banach spaces. First, the notion of the Yosida proximal mapping for generalized mixed implicit equilibrium problems is intro...A new system of generalized mixed implicit equilibrium problems is introduced and studied in Banach spaces. First, the notion of the Yosida proximal mapping for generalized mixed implicit equilibrium problems is introduced. By using the notion, a system of generalized equation problems is considered, and its equivalence with the system of generalized mixed implicit equilibrium problems is also proved. Next, by applying the system of generalized equation problems, we suggest and analyze an iterative algorithm to compute the approximate solutions of the system of generalized mixed implicit equilibrium problems. The strong convergence of the iterative sequences generated by the algorithm is proved under quite mild conditions. The results are new and unify and generalize some recent results in this field.展开更多
The purpose of this paper is to introduce and study the split equality variational inclusion problems in the setting of Banach spaces. For solving this kind of problems, some new iterative algorithms are proposed. Und...The purpose of this paper is to introduce and study the split equality variational inclusion problems in the setting of Banach spaces. For solving this kind of problems, some new iterative algorithms are proposed. Under suitable conditions, some strong convergence theorems for the sequences generated by the proposed algorithm are proved. As applications, we shall utilize the results presented in the paper to study the split equality feasibility prob- lems in Banach spaces and the split equality equilibrium problem in Banach spaces. The results presented in the paper are new.展开更多
In this article, fixed points of generalized asymptotically quasi-Ф-nonexpansive mappings and equilibrium problems are investigated based on a monotone projection algo- rithm. Strong convergence theorems are establis...In this article, fixed points of generalized asymptotically quasi-Ф-nonexpansive mappings and equilibrium problems are investigated based on a monotone projection algo- rithm. Strong convergence theorems are established without the aid of compactness in the framework of reflexive Banach spaces.展开更多
In this paper, we prove strong convergence theorems for approximation of a fixed point of a left Bregman strongly relatively nonexpansive mapping which is also a solution to a finite system of equilibrium problems in ...In this paper, we prove strong convergence theorems for approximation of a fixed point of a left Bregman strongly relatively nonexpansive mapping which is also a solution to a finite system of equilibrium problems in the framework of reflexive real Banach spaces. We also discuss the approximation of a common fixed point of a family of left Bregman strongly nonexpansive mappings which is also solution to a finite system of equilibrium problems in reflexive real Banach spaces. Our results complement many known recent results in the literature.展开更多
General solution of stresses solved from the two dimensiona l system of equilibrium equations in Cartesian coordinates is characterized by the presence ...General solution of stresses solved from the two dimensiona l system of equilibrium equations in Cartesian coordinates is characterized by the presence of two families of characteristic lines along which initial stresses and discontinuities in them are transmitted intact far down to infinity.This is against our intuition and not verifiable by experimental findings. For the fundamental case of infinite uniform pressure on the upper surface,a comparison between solutions from equilibrium equations in Cartesian coordinates and from those in polar coordinates is carried out in details.The semi infinite characteristic lines in the former are bent up to exponential spirals with both ends on the upper surface in the latter.Thus,the transmission pattern from solution in polar coordinates comes closer to actual situation.However,in polar reference frame,the solution for distribution of stresses in particulate half space under surface strip pressure or so can then only be obtained from boundary value problem of second order partial differential equation.展开更多
文摘By using an existence theorems of maximal elements for a family of set-valued mappings in G-convex spaces due to the author, some new nonempty intersection theorems for a family of set-valued mappings were established in noncompact product G-convex spaces. As applications, some equilibrium existence theorems for a system of generalized vector equilibrium problems were proved in noncompact product G-convex spaces. These theorems unify, improve and generalize some important known results in literature.
基金This project was supported by the NSF of Sichuan Education of China(2003A081)and SZD0406
文摘By applying a maximal element theorem on product FC-space due to author, some new equilibrium existence theorems for generalized games with fuzzy constraint correspondences are proved in FC-spaces. By using these equilibrium existence theorems, some new existence theorems of solutions for the system of generalized vector quasi-equilibrium problems are established in noncompact product FC-spaces. These results improve and generalize some recent results in literature to product FC-spaces without any convexity structure.
文摘The purpose of this paper is to present a new iterative scheme for finding a common solution of the generalized mixed equilibrium problems with an infinite family of inverse strongly monotone mappings and the fixed point problems of demimetric mappings under nonlinear transformations in Banach spaces. Applications are also included. The results in this paper are the extension and improvement of the recent results in the literature.
文摘By employing a fixed point theorem due to Ding, Park and Jung, some existence theorems of solutions for equilibrium problems with lower and upper bounds are proved in noncompact topological spaces. These results further answer the open problem raised by Isac, Sehgal and Singh under much weaker assumptions.
文摘By using an existence theorems of maximal elements for a family of set-valued mappings in G-convex spaces due to the author, some new nonempty intersection theorems for a family of set-valued mappings were established in noncompact product G-convex spaces. As applications, some equilibrium existence theorems for a system of generalized vector equilibrium problems were proved in noncompact product G-convex spaces. These theorems unify, improve and generalize some important known results in literature.
文摘The recently proposed method of our research group named as directional Lyapunov exponents(DLEs) is presented. Then, DLEs are used to analyze the eigenstructure of the output phase space around the equilibrium points. Finally, the impacts of the superlattice parameter changes on the characteristics of the output chaotic signal are analyzed. The experimental results show that parameter changes of the superlattice will affect the eigenstructure around the equilibrium points in the output phase space, and DLEs are sensitive to these changes.
文摘By applying a new fixed point theorem due to the author, some new equilibrium existence theorems of quasi-equilibrium problems are proved in noncompact generalized convex spaces. These theorems improve and generalize a number of important known results in recent literature.
文摘Some classes of generalized vector quasi-equilibrium problems ( in short, GVQEP) are introduced and studied in locally G-convex spaces which includes most of generalized vector equilibrium problems; generalized vector variational inequality problems, quasi-equilibrium problems and quasi-variational inequality problems as special cases. First, an equilibrium existence theorem for one person games is proved in locally G-convex spaces.. As applications, some new existence theorems of solutions for the GVQEP are established in noncompact locally G-convex spaces. These results and argument methods are new and completely different from that in recent literature.
文摘A system of generalized mixed equilibrium-like problems is introduced and the existence of its solutions is shown by using the auxiliary principle technique in Hilbert spaces.
基金supported by the Scientific Research Fund of Sichuan Normal University (No.09ZDL04)the Sichuan Province Leading Academic Discipline Project (No.SZD0406)
文摘A new system of generalized mixed equilibrium problems (SGMEPs) involving generalized mixed variational-like inequality problems is introduced and studied in reflexive Banach spaces. A system of auxiliary generalized mixed equilibrium problems (SAGMEPs) for solving the SGMEPs is first introduced. Existence and uniqueness of the solutions to the SAGMEPs is proved under quite mild assumptions without any coercive conditions in reflexive Banach spaces. Using the auxiliary principle technique, a new iterative algorithm for solving the SGMEPs is proposed and analyzed. Strong convergence of the iterative sequences generated by the algorithm is also proved under quite mild assumptions without any coercive conditions. These results improve, unify, and generalize some recent results in this field.
基金Project supported by the Scientific Research Fund of Sichuan Normal University(No.09ZDL04)the Sichuan Province Leading Academic Discipline Project(No.SZD0406)
文摘A new system of generalized mixed implicit equilibrium problems is introduced and studied in Banach spaces. First, the notion of the Yosida proximal mapping for generalized mixed implicit equilibrium problems is introduced. By using the notion, a system of generalized equation problems is considered, and its equivalence with the system of generalized mixed implicit equilibrium problems is also proved. Next, by applying the system of generalized equation problems, we suggest and analyze an iterative algorithm to compute the approximate solutions of the system of generalized mixed implicit equilibrium problems. The strong convergence of the iterative sequences generated by the algorithm is proved under quite mild conditions. The results are new and unify and generalize some recent results in this field.
基金supported by the National Natural Science Foundation of China(11361070)the Natural Science Foundation of China Medical University,Taiwan
文摘The purpose of this paper is to introduce and study the split equality variational inclusion problems in the setting of Banach spaces. For solving this kind of problems, some new iterative algorithms are proposed. Under suitable conditions, some strong convergence theorems for the sequences generated by the proposed algorithm are proved. As applications, we shall utilize the results presented in the paper to study the split equality feasibility prob- lems in Banach spaces and the split equality equilibrium problem in Banach spaces. The results presented in the paper are new.
基金supported by the National Natural Science Foundation of China under Grant No.11401152 and No.61603227
文摘In this article, fixed points of generalized asymptotically quasi-Ф-nonexpansive mappings and equilibrium problems are investigated based on a monotone projection algo- rithm. Strong convergence theorems are established without the aid of compactness in the framework of reflexive Banach spaces.
文摘In this paper, we prove strong convergence theorems for approximation of a fixed point of a left Bregman strongly relatively nonexpansive mapping which is also a solution to a finite system of equilibrium problems in the framework of reflexive real Banach spaces. We also discuss the approximation of a common fixed point of a family of left Bregman strongly nonexpansive mappings which is also solution to a finite system of equilibrium problems in reflexive real Banach spaces. Our results complement many known recent results in the literature.
文摘General solution of stresses solved from the two dimensiona l system of equilibrium equations in Cartesian coordinates is characterized by the presence of two families of characteristic lines along which initial stresses and discontinuities in them are transmitted intact far down to infinity.This is against our intuition and not verifiable by experimental findings. For the fundamental case of infinite uniform pressure on the upper surface,a comparison between solutions from equilibrium equations in Cartesian coordinates and from those in polar coordinates is carried out in details.The semi infinite characteristic lines in the former are bent up to exponential spirals with both ends on the upper surface in the latter.Thus,the transmission pattern from solution in polar coordinates comes closer to actual situation.However,in polar reference frame,the solution for distribution of stresses in particulate half space under surface strip pressure or so can then only be obtained from boundary value problem of second order partial differential equation.