Based on the consideration of operation environment and structural property, an optimum design model of offshore jacket platform is developed in this paper, namely, the reliability-based full-life cycle optimum design...Based on the consideration of operation environment and structural property, an optimum design model of offshore jacket platform is developed in this paper, namely, the reliability-based full-life cycle optimum design model. In this model, the time-dependent reliability assessment method for structural members is established by combination of the decrease of sectional size and performance deterioration of material. The initial investment, maintenance cost and failure loss cost are assembled into the model. The total cost of the platform structure system in its full service period is chosen as the objective function, and the initial reliabilities of the layer elements partitioned in advance are taken as the design variables. Different models are obtained, depending on whether the system reliability constraint is considered or not. This optimum design model can result in the lowest full-life cost and the optimal initial layer reliability of an offshore jacket platform in the design of marine structures. The feasibility of this model is illustrated with an actual jacket platform in the Liaodong Gulf as an example.展开更多
In recent years, there has been global interest in meeting targets relating to energy affordability and security while taking into account greenhouse gas emissions. This has heightened major interest in potential inve...In recent years, there has been global interest in meeting targets relating to energy affordability and security while taking into account greenhouse gas emissions. This has heightened major interest in potential investigations into the use of supercritical carbon dioxide (sCO2) power cycles. Climate change mitigation is the ultimate driver for this increased interest;other relevant issues include the potential for high cycle efficiency and a circular economy. In this study, a 25 MWe recompression closed Brayton cycle (RCBC) has been assessed, and sCO2 has been proposed as the working fluid for the power plant. The methodology used in this research work comprises thermodynamic and techno-economic analysis for the prospective commercialization of this sCO2 power cycle. An evaluated estimation of capital expenditure, operational expenditure, and cost of electricity has been considered in this study. The ASPEN Plus simulation results have been compared with theoretical and mathematical calculations to assess the performance of the compressors, turbine, and heat exchangers. The results thus reveal that the cycle efficiency for this prospective sCO2 recompression closed Brayton cycle increases (39% - 53.6%) as the temperature progressively increases from 550˚C to 900˚C. Data from the Aspen simulation model was used to aid the cost function calculations to estimate the total capital investment cost of the plant. Also, the techno-economic results have shown less cost for purchasing equipment due to fewer components being required for the cycle configuration as compared to the conventional steam power plant.展开更多
Two dynamic grey models DGM (1, 1) for the verification cycle and the lifecycle of measuring instrument based on time sequence and frequency sequence were set up, according to the statistical feature of examination da...Two dynamic grey models DGM (1, 1) for the verification cycle and the lifecycle of measuring instrument based on time sequence and frequency sequence were set up, according to the statistical feature of examination data and weighting method. By a specific case, i.e. vernier caliper, it is proved that the fit precision and forecast precision of the models are much higher, the cycles are obviously different under different working conditions, and the forecast result of the frequency sequence model is better than that of the time sequence model. Combining dynamic grey model and auto-manufacturing case the controlling and information subsystems of verification cycle and the lifecycle based on information integration, multi-sensor controlling and management controlling were given. The models can be used in production process to help enterprise reduce error, cost and flaw.展开更多
It is estimated that there is a generation of 307,224 ton/year [1] of waste from electronic and electronic equipment (WEEE) in Mexico, of which 10% is recycled, 40% remains stored and 50% reaches landfills or uncontro...It is estimated that there is a generation of 307,224 ton/year [1] of waste from electronic and electronic equipment (WEEE) in Mexico, of which 10% is recycled, 40% remains stored and 50% reaches landfills or uncontrolled dumps. In the practice, even the regulatory instruments are not consolidated and the adequate management of the use of WEEE management, so the aim of this study is an analysis of life cycle of printed circuit boards (TCI) to identify the management alternatives that represent the least impact to the environment. This assessment was carried out using software SIMAPRO to determine the environmental impact of each scenario, through the comparison of impacts and the proposed improvements to reduce it, following phases of this methodology by applying standards, ISO 14040/ISO 14044 [2], using data from the INE official reports since 2006 until 2010 which concentrate the information of the WEEE problem in Mexico. These data were pooled to carry out inventories according to the availability in the information, identifying the environmental impacts generated by processing. The conclusions of the LCA will serve to identify the stage with greater environmental impact, and thus propose ideas for improvement in order to minimize this impact.展开更多
There are very few studies of the Carbon Footprint of Products (CFPs) in the service sector (e.g. transport and waste treatment) in comparison with those of industrial products and farm products. In this study, the CF...There are very few studies of the Carbon Footprint of Products (CFPs) in the service sector (e.g. transport and waste treatment) in comparison with those of industrial products and farm products. In this study, the CFPs of the recycling services of used beverage cans (aluminum and steel) and waste papers (cardboard, magazine and newspaper) in waste treatment were estimated as a first trial model of the service sector. Regarding the CFPs of whole life cycle of the recycling services, the amounts of CO2-equivalent (CO2e) greenhouse gas (GHG) emissions from the collection and transportation process were the largest in all recycling cases. The reason that the collection and transportation process emits the largest amounts of GHG emissions is that the collection vehicles (trucks) consume the large amounts of diesel fuel. Regarding the CFPs of the capital equipment, the amounts of GHG emissions from the capital equipment were the second largest in all recycling cases. It was found that the percentages of amounts of GHG emissions from the capital equipment in the recycling services were larger than those of industrial products and farm products.展开更多
文摘Based on the consideration of operation environment and structural property, an optimum design model of offshore jacket platform is developed in this paper, namely, the reliability-based full-life cycle optimum design model. In this model, the time-dependent reliability assessment method for structural members is established by combination of the decrease of sectional size and performance deterioration of material. The initial investment, maintenance cost and failure loss cost are assembled into the model. The total cost of the platform structure system in its full service period is chosen as the objective function, and the initial reliabilities of the layer elements partitioned in advance are taken as the design variables. Different models are obtained, depending on whether the system reliability constraint is considered or not. This optimum design model can result in the lowest full-life cost and the optimal initial layer reliability of an offshore jacket platform in the design of marine structures. The feasibility of this model is illustrated with an actual jacket platform in the Liaodong Gulf as an example.
文摘In recent years, there has been global interest in meeting targets relating to energy affordability and security while taking into account greenhouse gas emissions. This has heightened major interest in potential investigations into the use of supercritical carbon dioxide (sCO2) power cycles. Climate change mitigation is the ultimate driver for this increased interest;other relevant issues include the potential for high cycle efficiency and a circular economy. In this study, a 25 MWe recompression closed Brayton cycle (RCBC) has been assessed, and sCO2 has been proposed as the working fluid for the power plant. The methodology used in this research work comprises thermodynamic and techno-economic analysis for the prospective commercialization of this sCO2 power cycle. An evaluated estimation of capital expenditure, operational expenditure, and cost of electricity has been considered in this study. The ASPEN Plus simulation results have been compared with theoretical and mathematical calculations to assess the performance of the compressors, turbine, and heat exchangers. The results thus reveal that the cycle efficiency for this prospective sCO2 recompression closed Brayton cycle increases (39% - 53.6%) as the temperature progressively increases from 550˚C to 900˚C. Data from the Aspen simulation model was used to aid the cost function calculations to estimate the total capital investment cost of the plant. Also, the techno-economic results have shown less cost for purchasing equipment due to fewer components being required for the cycle configuration as compared to the conventional steam power plant.
文摘Two dynamic grey models DGM (1, 1) for the verification cycle and the lifecycle of measuring instrument based on time sequence and frequency sequence were set up, according to the statistical feature of examination data and weighting method. By a specific case, i.e. vernier caliper, it is proved that the fit precision and forecast precision of the models are much higher, the cycles are obviously different under different working conditions, and the forecast result of the frequency sequence model is better than that of the time sequence model. Combining dynamic grey model and auto-manufacturing case the controlling and information subsystems of verification cycle and the lifecycle based on information integration, multi-sensor controlling and management controlling were given. The models can be used in production process to help enterprise reduce error, cost and flaw.
文摘It is estimated that there is a generation of 307,224 ton/year [1] of waste from electronic and electronic equipment (WEEE) in Mexico, of which 10% is recycled, 40% remains stored and 50% reaches landfills or uncontrolled dumps. In the practice, even the regulatory instruments are not consolidated and the adequate management of the use of WEEE management, so the aim of this study is an analysis of life cycle of printed circuit boards (TCI) to identify the management alternatives that represent the least impact to the environment. This assessment was carried out using software SIMAPRO to determine the environmental impact of each scenario, through the comparison of impacts and the proposed improvements to reduce it, following phases of this methodology by applying standards, ISO 14040/ISO 14044 [2], using data from the INE official reports since 2006 until 2010 which concentrate the information of the WEEE problem in Mexico. These data were pooled to carry out inventories according to the availability in the information, identifying the environmental impacts generated by processing. The conclusions of the LCA will serve to identify the stage with greater environmental impact, and thus propose ideas for improvement in order to minimize this impact.
文摘There are very few studies of the Carbon Footprint of Products (CFPs) in the service sector (e.g. transport and waste treatment) in comparison with those of industrial products and farm products. In this study, the CFPs of the recycling services of used beverage cans (aluminum and steel) and waste papers (cardboard, magazine and newspaper) in waste treatment were estimated as a first trial model of the service sector. Regarding the CFPs of whole life cycle of the recycling services, the amounts of CO2-equivalent (CO2e) greenhouse gas (GHG) emissions from the collection and transportation process were the largest in all recycling cases. The reason that the collection and transportation process emits the largest amounts of GHG emissions is that the collection vehicles (trucks) consume the large amounts of diesel fuel. Regarding the CFPs of the capital equipment, the amounts of GHG emissions from the capital equipment were the second largest in all recycling cases. It was found that the percentages of amounts of GHG emissions from the capital equipment in the recycling services were larger than those of industrial products and farm products.