Physical mechanisms and influencing factors on the effective stress coefficient for rock/soil-like porous materials are investigated, based on which equivalent connectivity index is proposed. The equivalent connectivi...Physical mechanisms and influencing factors on the effective stress coefficient for rock/soil-like porous materials are investigated, based on which equivalent connectivity index is proposed. The equivalent connectivity index, relying on the meso-scale structure of porous material and the property of liquid, denotes the connectivity of pores in Representative Element Area (REA). If the conductivity of the porous material is anisotropic, the equivalent connectivity index is a second order tensor. Based on the basic theories of continuous mechanics and tensor analysis, relationship between area porosity and volumetric porosity of porous materials is deduced. Then a generalized expression, describing the relation between effective stress coefficient tensor and equivalent connectivity tensor of pores, is proposed, and the expression can be applied to isotropic media and also to anisotropic materials. Furthermore, evolution of porosity and equivalent connectivity index of the pore are studied in the strain space, and the method to determine the corresponding functions in expressions above is proposed using genetic algorithm and genetic programming. Two applications show that the results obtained by the method in this paper perfectly agree with the test data. This paper provides an important theoretical support to the coupled hydro-mechanical research.展开更多
In the present study, the dynamic response of a coupled SPM-feeder-cage system under irregular waves and shear currents is analyzed. A numerical model is developed by using the commercial software Orca Flex. Hydrodyna...In the present study, the dynamic response of a coupled SPM-feeder-cage system under irregular waves and shear currents is analyzed. A numerical model is developed by using the commercial software Orca Flex. Hydrodynamics coefficients of the vessel are calculated by using a 3D diffraction/radiation panel program. First- and second-order wave forces are included in the calculations. Morison equation is used to compute the drag force on line elements representing the net. Drag coefficients are determined at every time step in the simulation considering the relative normal velocity between the structural elements and the fluid flow. The dynamic response of the coupled system is analyzed for various environments and net materials. The results of the study show the effects of solidity ratio of the net and vertical positions of the cage on the overall dynamic response of the system, confirming the viability of this type of configuration for future development of offshore aquaculture in deep waters.展开更多
基金supported by the Yalongjiang River Joint Fund by the National Natural Science Foundation of China(NSFC)Ertan Hydropower Development Company,LTD(Nos.50579091 and 50539090)+1 种基金NSFC(No.10772190)Major State Basic Research Project of China(No.2002CB412708)
文摘Physical mechanisms and influencing factors on the effective stress coefficient for rock/soil-like porous materials are investigated, based on which equivalent connectivity index is proposed. The equivalent connectivity index, relying on the meso-scale structure of porous material and the property of liquid, denotes the connectivity of pores in Representative Element Area (REA). If the conductivity of the porous material is anisotropic, the equivalent connectivity index is a second order tensor. Based on the basic theories of continuous mechanics and tensor analysis, relationship between area porosity and volumetric porosity of porous materials is deduced. Then a generalized expression, describing the relation between effective stress coefficient tensor and equivalent connectivity tensor of pores, is proposed, and the expression can be applied to isotropic media and also to anisotropic materials. Furthermore, evolution of porosity and equivalent connectivity index of the pore are studied in the strain space, and the method to determine the corresponding functions in expressions above is proposed using genetic algorithm and genetic programming. Two applications show that the results obtained by the method in this paper perfectly agree with the test data. This paper provides an important theoretical support to the coupled hydro-mechanical research.
基金Kampachi Farms LLC for their support to complete this work and for all the technical information provided to complete the numerical model
文摘In the present study, the dynamic response of a coupled SPM-feeder-cage system under irregular waves and shear currents is analyzed. A numerical model is developed by using the commercial software Orca Flex. Hydrodynamics coefficients of the vessel are calculated by using a 3D diffraction/radiation panel program. First- and second-order wave forces are included in the calculations. Morison equation is used to compute the drag force on line elements representing the net. Drag coefficients are determined at every time step in the simulation considering the relative normal velocity between the structural elements and the fluid flow. The dynamic response of the coupled system is analyzed for various environments and net materials. The results of the study show the effects of solidity ratio of the net and vertical positions of the cage on the overall dynamic response of the system, confirming the viability of this type of configuration for future development of offshore aquaculture in deep waters.