Si-PIN photodetectors having features such as low cost,small size,low weight,low voltage,and low power consumption are widely used as radiation detectors in electronic personal dosimeters(EPDs).The technical parameter...Si-PIN photodetectors having features such as low cost,small size,low weight,low voltage,and low power consumption are widely used as radiation detectors in electronic personal dosimeters(EPDs).The technical parameters of EPDs based on the Si-PIN photodetectors include photon energy response(PER),angular response,inherent error,and dose rate linearity.Among them,PER is a key parameter for evaluation of EPD measurement accuracy.At present,owing to the limitations of volume,power consumption,and EPD cost,the PER is usually corrected by a combination of single-channel counting techniques and filtering material methods.However,the above-mentioned methods have problems such as poor PER and low measurement accuracy.To solve such problems,in this study,a 1024-channel spectrometry system using a Si-PIN photodetector was developed and fullspectrum measurement in the reference radiation fields was conducted for radiation protection.The measurement results using the few-channel spectroscopy dose method showed that the PER could be controlled within±14%and±2%under the conditions of two and three energy intervals,respectively,with different channel numbers.The PER measured at 0°angle of radiation incidence meets the-29%to+67%requirements of IEC 61526:2010.Meanwhile,the channel number and counts-to-dose conversion factors formed in the experiment can be integrated into an EPD.展开更多
A new algorithm for the solution of quadratic programming problemsis put forward in terms of the mixed energy theory and is furtherused for the incremental solution of elastic-plastic trussstructures. The method propo...A new algorithm for the solution of quadratic programming problemsis put forward in terms of the mixed energy theory and is furtherused for the incremental solution of elastic-plastic trussstructures. The method proposed is different from the traditionalone, for which the unknown variables are selected just in one classsuch as displacements or stresses. The present method selects thevariables in the mixed form with both displacement and stress. As themethod is established in the hybrid space, the information found inthe previous incremental step can be used for the solution of thepresent step, making the algorithm highly effi- cient in thenumerical solution process of quadratic programming problems. Theresults obtained in the exm- ples of the elastic-plastic solution ofthe truss structures verify what has been predicted in thetheoretical anal- ysis.展开更多
The fuel-air cloud resulting from an accidental discharge event is normally irregular in shape and varying in concentration. Performance of dispersion simulations using the computational fluid dynamics (CFD)-based t...The fuel-air cloud resulting from an accidental discharge event is normally irregular in shape and varying in concentration. Performance of dispersion simulations using the computational fluid dynamics (CFD)-based tool FLACS can get an uneven and irregular cloud. For the performance of gas explosion study with FLACS, the equivalent stoichiometric fuel-air cloud concept is widely applied to get a representative distribution of explosion loads. The Q9 cloud model that is employed in FLACS is an equivalent fuel-air cloud representation, in which the laminar burning velocity with first order SL and volume expansion ratio are taken into consideration. However, during an explosion in congested areas, the main part of the combustion involves turbulent flame propagation. Hence, to give a more reasonable equivalent fuel-air size, the turbulent burning velocity must be taken into consideration. The paper presents a new equivalent cloud method using the turbulent burning velocity, which is described as a function of SL, deduced from the TNO multi- energy method.展开更多
High-speed and precision positioning are fundamental requirements for high-acceleration low-load mechanisms in integrated circuit (IC) packaging equipment. In this paper, we derive the transient nonlinear dynamicres...High-speed and precision positioning are fundamental requirements for high-acceleration low-load mechanisms in integrated circuit (IC) packaging equipment. In this paper, we derive the transient nonlinear dynamicresponse equations of high-acceleration mechanisms, which reveal that stiffness, frequency, damping, and driving frequency are the primary factors. Therefore, we propose a new structural optimization and velocity-planning method for the precision positioning of a high-acceleration mechanism based on optimal spatial and temporal distribution of inertial energy. For structural optimization, we first reviewed the commonly flexible multibody dynamic optimization using equivalent static loads method (ESLM), and then we selected the modified ESLM for optimal spatial distribution of inertial energy; hence, not only the stiffness but also the inertia and frequency of the real modal shapes are considered. For velocity planning, we developed a new velocity-planning method based on nonlinear dynamic-response optimization with varying motion conditions. Our method was verified on a high-acceleration die bonder. The amplitude of residual vibration could be decreased by more than 20% via structural optimization and the positioning time could be reduced by more than 40% via asymmetric variable velocity planning. This method provides an effective theoretical support for the precision positioning of high-acceleration low-load mechanisms.展开更多
Under inspiration from the structure-preserving property of symplectic difference schemes for Hamiltonian systems, two homogenization conditions for a representative unit cell of the periodical composites are proposed...Under inspiration from the structure-preserving property of symplectic difference schemes for Hamiltonian systems, two homogenization conditions for a representative unit cell of the periodical composites are proposed, one condition is the equivalence of strain energy, and the other is the deformation similarity. Based on these two homogenization conditions, an eigenelement method is presented, which is characteristic of structure-preserving property. It follows from the frequency comparisons that the eigenelement method is more accurate than the stiffness average method and the compliance average method.展开更多
Recently Zheng & Hwang established a series of independence theorems concerning with planar effective elastic properties. It is manifested that the estimation of the effective elastic properties of microcracked so...Recently Zheng & Hwang established a series of independence theorems concerning with planar effective elastic properties. It is manifested that the estimation of the effective elastic properties of microcracked solids through the generalized self-consistent method (GSCM) contradicts with these independence theorems. In this paper it is shown that such contradiction is actually caused by the approximate algorithm adopted, while the exact solution of GSCM is consistent with these rigorously established independence theorems. Since only an approximate algorithm in GCSM is available in dealing with problems involving non-circular inclusions or holes, an intrinsic GSCM is proposed, which can be performed based on an approximate algorithm and the corresponding estimations are consistent with the independence theorems.展开更多
Several micromechanics models for the determination of composite moduli are investigated in this paper,including the dilute solution,self-consistent method,generalized self-consistent method,and Mori-Tanaka's meth...Several micromechanics models for the determination of composite moduli are investigated in this paper,including the dilute solution,self-consistent method,generalized self-consistent method,and Mori-Tanaka's method.These mi- cromechanical models have been developed by following quite different approaches and physical interpretations.It is shown that all the micromechanics models share a common ground,the generalized Budiansky's energy-equivalence framework.The dif- ference among the various models is shown to be the way in which the average strain of the inclusion phase is evaluated.As a bonus of this theoretical development,the asymmetry suffered in Mori-Tanaka's method can be circumvented and the applica- bility of the generalized self-consistent method can be extended to materials contain- ing microcracks,multiphase inclusions,non-spherical inclusions,or non-cylindrical inclusions.The relevance to the differential method,double-inclusion model,and Hashin-Shtrikman bounds is also discussed.The application of these micromechanics models to particulate-reinforced composites and microcracked solids is reviewed and some new results are presented.展开更多
基金This work was partly supported by the National Key Scientific Instruments to Develop Dedicated Program(Nos.2013YQ090811 and 2016YFF0103800)the National Key Research and Development Program(No.2017YFF0211100).
文摘Si-PIN photodetectors having features such as low cost,small size,low weight,low voltage,and low power consumption are widely used as radiation detectors in electronic personal dosimeters(EPDs).The technical parameters of EPDs based on the Si-PIN photodetectors include photon energy response(PER),angular response,inherent error,and dose rate linearity.Among them,PER is a key parameter for evaluation of EPD measurement accuracy.At present,owing to the limitations of volume,power consumption,and EPD cost,the PER is usually corrected by a combination of single-channel counting techniques and filtering material methods.However,the above-mentioned methods have problems such as poor PER and low measurement accuracy.To solve such problems,in this study,a 1024-channel spectrometry system using a Si-PIN photodetector was developed and fullspectrum measurement in the reference radiation fields was conducted for radiation protection.The measurement results using the few-channel spectroscopy dose method showed that the PER could be controlled within±14%and±2%under the conditions of two and three energy intervals,respectively,with different channel numbers.The PER measured at 0°angle of radiation incidence meets the-29%to+67%requirements of IEC 61526:2010.Meanwhile,the channel number and counts-to-dose conversion factors formed in the experiment can be integrated into an EPD.
基金the National Natural Science Foundation of China(No.50178916,No.19732020 and No.19872016)the National Key Basic lteseareh Special Foundation(No.G1999032805)+1 种基金the Special Funds for Major State Basic Researeh Projectsthe Foundation for University Key Teachers by the Ministry of Education of China
文摘A new algorithm for the solution of quadratic programming problemsis put forward in terms of the mixed energy theory and is furtherused for the incremental solution of elastic-plastic trussstructures. The method proposed is different from the traditionalone, for which the unknown variables are selected just in one classsuch as displacements or stresses. The present method selects thevariables in the mixed form with both displacement and stress. As themethod is established in the hybrid space, the information found inthe previous incremental step can be used for the solution of thepresent step, making the algorithm highly effi- cient in thenumerical solution process of quadratic programming problems. Theresults obtained in the exm- ples of the elastic-plastic solution ofthe truss structures verify what has been predicted in thetheoretical anal- ysis.
文摘The fuel-air cloud resulting from an accidental discharge event is normally irregular in shape and varying in concentration. Performance of dispersion simulations using the computational fluid dynamics (CFD)-based tool FLACS can get an uneven and irregular cloud. For the performance of gas explosion study with FLACS, the equivalent stoichiometric fuel-air cloud concept is widely applied to get a representative distribution of explosion loads. The Q9 cloud model that is employed in FLACS is an equivalent fuel-air cloud representation, in which the laminar burning velocity with first order SL and volume expansion ratio are taken into consideration. However, during an explosion in congested areas, the main part of the combustion involves turbulent flame propagation. Hence, to give a more reasonable equivalent fuel-air size, the turbulent burning velocity must be taken into consideration. The paper presents a new equivalent cloud method using the turbulent burning velocity, which is described as a function of SL, deduced from the TNO multi- energy method.
基金supported by the National Key Basic Research Program of China (2011CB013104)National Natural Science Foundation of China (U1134004)+2 种基金Guangdong Provincial Natural Science Foundation (2015A030312008)Science and Technology Program of Guangzhou (201510010281)Guangdong Provincial Science and Technology Plan (2013B010402014)
文摘High-speed and precision positioning are fundamental requirements for high-acceleration low-load mechanisms in integrated circuit (IC) packaging equipment. In this paper, we derive the transient nonlinear dynamicresponse equations of high-acceleration mechanisms, which reveal that stiffness, frequency, damping, and driving frequency are the primary factors. Therefore, we propose a new structural optimization and velocity-planning method for the precision positioning of a high-acceleration mechanism based on optimal spatial and temporal distribution of inertial energy. For structural optimization, we first reviewed the commonly flexible multibody dynamic optimization using equivalent static loads method (ESLM), and then we selected the modified ESLM for optimal spatial distribution of inertial energy; hence, not only the stiffness but also the inertia and frequency of the real modal shapes are considered. For velocity planning, we developed a new velocity-planning method based on nonlinear dynamic-response optimization with varying motion conditions. Our method was verified on a high-acceleration die bonder. The amplitude of residual vibration could be decreased by more than 20% via structural optimization and the positioning time could be reduced by more than 40% via asymmetric variable velocity planning. This method provides an effective theoretical support for the precision positioning of high-acceleration low-load mechanisms.
文摘Under inspiration from the structure-preserving property of symplectic difference schemes for Hamiltonian systems, two homogenization conditions for a representative unit cell of the periodical composites are proposed, one condition is the equivalence of strain energy, and the other is the deformation similarity. Based on these two homogenization conditions, an eigenelement method is presented, which is characteristic of structure-preserving property. It follows from the frequency comparisons that the eigenelement method is more accurate than the stiffness average method and the compliance average method.
文摘Recently Zheng & Hwang established a series of independence theorems concerning with planar effective elastic properties. It is manifested that the estimation of the effective elastic properties of microcracked solids through the generalized self-consistent method (GSCM) contradicts with these independence theorems. In this paper it is shown that such contradiction is actually caused by the approximate algorithm adopted, while the exact solution of GSCM is consistent with these rigorously established independence theorems. Since only an approximate algorithm in GCSM is available in dealing with problems involving non-circular inclusions or holes, an intrinsic GSCM is proposed, which can be performed based on an approximate algorithm and the corresponding estimations are consistent with the independence theorems.
文摘Several micromechanics models for the determination of composite moduli are investigated in this paper,including the dilute solution,self-consistent method,generalized self-consistent method,and Mori-Tanaka's method.These mi- cromechanical models have been developed by following quite different approaches and physical interpretations.It is shown that all the micromechanics models share a common ground,the generalized Budiansky's energy-equivalence framework.The dif- ference among the various models is shown to be the way in which the average strain of the inclusion phase is evaluated.As a bonus of this theoretical development,the asymmetry suffered in Mori-Tanaka's method can be circumvented and the applica- bility of the generalized self-consistent method can be extended to materials contain- ing microcracks,multiphase inclusions,non-spherical inclusions,or non-cylindrical inclusions.The relevance to the differential method,double-inclusion model,and Hashin-Shtrikman bounds is also discussed.The application of these micromechanics models to particulate-reinforced composites and microcracked solids is reviewed and some new results are presented.