This paper proposes a new technique which introduces the high-order single-step-β method(HSM)into the experimental study on the substructure pseudo-dynamic testing(SPDT).The technique is based on the proposed concept...This paper proposes a new technique which introduces the high-order single-step-β method(HSM)into the experimental study on the substructure pseudo-dynamic testing(SPDT).The technique is based on the proposed concept of equivalent shear stiffness which can meet the requirement of the HSM algorithm.A study is done to theoretically validate the technique by the numerical analysis of two-storey shear building structure,in comparison of the proposed substructure pseudo-dynamic testing algorithm with the central difference method(CDM).Then,a full-scale SPDT model,the three-storey frame-supported reinforced concrete short-limb masonry shear wall structure,is designed and tested to simulate the seismic response of the corresponding six-storey structure and verify the proposed force control HSM technique.Meanwhile,the techniques of both stiffness correction and force control are suggested to control algorithmic error,control error and measurement error.The results indicate that the force control HSM can be used in the full-scale multi-degree-of-freedom(MDOF)substructure pseudo-dynamic testing before descent segment of structure restoring force properties.展开更多
The maximum predicting error of the commonly used passive truncated mooring system method may reach 30%due to the difference of dynamic characteristics between the truncated and full-depth mooring line.In this paper,t...The maximum predicting error of the commonly used passive truncated mooring system method may reach 30%due to the difference of dynamic characteristics between the truncated and full-depth mooring line.In this paper,the experimental strategy called three-parameter(displacement,velocity and acceleration)active control method at the truncated point of mooring line is established to implement the synchronous equivalent of motion and force,and the realization of active truncated mooring system for model test is studied theoretically.The influences of threeparameter and one-parameter(displacement)active control strategies on the compensation effects are compared by numerical study.The results show that the established three-parameter active control method can feasibly realize the static and dynamic equivalent of truncated and full-depth mooring system,laying a good foundation for the following physical model test of active truncated mooring system.展开更多
基金Sponsored by the National Natural Science Foundation of China(Grant No.50508012)
文摘This paper proposes a new technique which introduces the high-order single-step-β method(HSM)into the experimental study on the substructure pseudo-dynamic testing(SPDT).The technique is based on the proposed concept of equivalent shear stiffness which can meet the requirement of the HSM algorithm.A study is done to theoretically validate the technique by the numerical analysis of two-storey shear building structure,in comparison of the proposed substructure pseudo-dynamic testing algorithm with the central difference method(CDM).Then,a full-scale SPDT model,the three-storey frame-supported reinforced concrete short-limb masonry shear wall structure,is designed and tested to simulate the seismic response of the corresponding six-storey structure and verify the proposed force control HSM technique.Meanwhile,the techniques of both stiffness correction and force control are suggested to control algorithmic error,control error and measurement error.The results indicate that the force control HSM can be used in the full-scale multi-degree-of-freedom(MDOF)substructure pseudo-dynamic testing before descent segment of structure restoring force properties.
基金financially supported by the National Natural Science Foundation of China(Grant No.51979030)the Natural Science Foundation of Liaoning Province(Grant No.2021-KF-16-01)the Fundamental Research Funds for the Central Universities。
文摘The maximum predicting error of the commonly used passive truncated mooring system method may reach 30%due to the difference of dynamic characteristics between the truncated and full-depth mooring line.In this paper,the experimental strategy called three-parameter(displacement,velocity and acceleration)active control method at the truncated point of mooring line is established to implement the synchronous equivalent of motion and force,and the realization of active truncated mooring system for model test is studied theoretically.The influences of threeparameter and one-parameter(displacement)active control strategies on the compensation effects are compared by numerical study.The results show that the established three-parameter active control method can feasibly realize the static and dynamic equivalent of truncated and full-depth mooring system,laying a good foundation for the following physical model test of active truncated mooring system.