A triboelectric nanogenerator (TENG) with an organic nanocomposite electret thin film as the triboelectric layer for mechanical energy harvesting was investigated systematically. In combination with corona charging,...A triboelectric nanogenerator (TENG) with an organic nanocomposite electret thin film as the triboelectric layer for mechanical energy harvesting was investigated systematically. In combination with corona charging, a TENG was fabricated by using embedded-nanocapacitor-structure polytetrafluoroethylene (PTFE) impregnated with gold nanoparticles (Au-NPs). The output performances, stability, and durability of the TENGs with Au-PTFE nanocomposite films were characterized after being washed in water. It was found that the output current increases by 70% and the equivalent surface charge density (ESCD) reaches 85 μC/m^2 in comparison to the virgin PTFE film. Such outstanding performance is likely due to the equivalent nanocapacitors between the Au-NPs and PTFE molecules, which serve as nano charge traps in the nanocomposite electret film under negative high-voltage corona charging. This work not only expands the practical applications of TENGs, but also opens up new possibilities for the development of high performance triboelectric materials.展开更多
文摘A triboelectric nanogenerator (TENG) with an organic nanocomposite electret thin film as the triboelectric layer for mechanical energy harvesting was investigated systematically. In combination with corona charging, a TENG was fabricated by using embedded-nanocapacitor-structure polytetrafluoroethylene (PTFE) impregnated with gold nanoparticles (Au-NPs). The output performances, stability, and durability of the TENGs with Au-PTFE nanocomposite films were characterized after being washed in water. It was found that the output current increases by 70% and the equivalent surface charge density (ESCD) reaches 85 μC/m^2 in comparison to the virgin PTFE film. Such outstanding performance is likely due to the equivalent nanocapacitors between the Au-NPs and PTFE molecules, which serve as nano charge traps in the nanocomposite electret film under negative high-voltage corona charging. This work not only expands the practical applications of TENGs, but also opens up new possibilities for the development of high performance triboelectric materials.