This paper presents an improved approach based on the equivalent-weights particle filter(EWPF)that uses the proposal density to effectively improve the traditional particle filter.The proposed approach uses historical...This paper presents an improved approach based on the equivalent-weights particle filter(EWPF)that uses the proposal density to effectively improve the traditional particle filter.The proposed approach uses historical data to calculate statistical observations instead of the future observations used in the EWPF’s proposal density and draws on the localization scheme used in the localized PF(LPF)to construct the localized EWPF.The new approach is called the statistical observation localized EWPF(LEWPF-Sobs);it uses statistical observations that are better adapted to the requirements of real-time assimilation and the localization function is used to calculate weights to reduce the effect of missing observations on the weights.This approach not only retains the advantages of the EWPF,but also improves the assimilation quality when using sparse observations.Numerical experiments performed with the Lorenz 96 model show that the statistical observation EWPF is better than the EWPF and EAKF when the model uses standard distribution observations.Comparisons of the statistical observation localized EWPF and LPF reveal the advantages of the new method,with fewer particles giving better results.In particular,the new improved filter performs better than the traditional algorithms when the observation network contains densely spaced measurements associated with model state nonlinearities.展开更多
Near-infrared spectroscopy(NIRS)technology and Mie theory are utilized for fundamental research on radiofrequency ablation of biological tissue.Firstly,NIRS is utilized to monitor rats undergoing radiofrequency ablati...Near-infrared spectroscopy(NIRS)technology and Mie theory are utilized for fundamental research on radiofrequency ablation of biological tissue.Firstly,NIRS is utilized to monitor rats undergoing radiofrequency ablation surgery in real time so as to explore the relationship between reduced scattering coefficient(μ_(s)')and the degree of thermally induced tissue coagulation.Then,Mie theory is utilized to analyze the morphological structure change of biological tissue so as to explore the basic mechanism of the change of optical parameters caused by thermally induced tissue coagulation.Results show that there is a close relationship between μ_(s)' and the degree of thermally induced tissue coagulation;the degree of thermal coagulation can be obtained by the value of μ_(s)';when biological tissue thermally coagulates,the average equivalent scattering particle decreases,the particle density increases,and the anisotropy factor decreases.展开更多
基金The National Basic Research Program of China under contract Nos 2017YFC1404100,2017YFC1404103 and 2017YFC1404104the National Natural Science Foundation of China under contract No.41676088。
文摘This paper presents an improved approach based on the equivalent-weights particle filter(EWPF)that uses the proposal density to effectively improve the traditional particle filter.The proposed approach uses historical data to calculate statistical observations instead of the future observations used in the EWPF’s proposal density and draws on the localization scheme used in the localized PF(LPF)to construct the localized EWPF.The new approach is called the statistical observation localized EWPF(LEWPF-Sobs);it uses statistical observations that are better adapted to the requirements of real-time assimilation and the localization function is used to calculate weights to reduce the effect of missing observations on the weights.This approach not only retains the advantages of the EWPF,but also improves the assimilation quality when using sparse observations.Numerical experiments performed with the Lorenz 96 model show that the statistical observation EWPF is better than the EWPF and EAKF when the model uses standard distribution observations.Comparisons of the statistical observation localized EWPF and LPF reveal the advantages of the new method,with fewer particles giving better results.In particular,the new improved filter performs better than the traditional algorithms when the observation network contains densely spaced measurements associated with model state nonlinearities.
基金supported by the National Natural Science Foundation(Grant No.30671997)the National High Technology Research and Development Program of China(No.2008AA02Z438).
文摘Near-infrared spectroscopy(NIRS)technology and Mie theory are utilized for fundamental research on radiofrequency ablation of biological tissue.Firstly,NIRS is utilized to monitor rats undergoing radiofrequency ablation surgery in real time so as to explore the relationship between reduced scattering coefficient(μ_(s)')and the degree of thermally induced tissue coagulation.Then,Mie theory is utilized to analyze the morphological structure change of biological tissue so as to explore the basic mechanism of the change of optical parameters caused by thermally induced tissue coagulation.Results show that there is a close relationship between μ_(s)' and the degree of thermally induced tissue coagulation;the degree of thermal coagulation can be obtained by the value of μ_(s)';when biological tissue thermally coagulates,the average equivalent scattering particle decreases,the particle density increases,and the anisotropy factor decreases.