In order to examine how a propagator behaves in non-perturbative theories and how its behavior is influenced by the choice of a covariant gauge a truncated Dyson-Schwinger equation is used to numerically investigate t...In order to examine how a propagator behaves in non-perturbative theories and how its behavior is influenced by the choice of a covariant gauge a truncated Dyson-Schwinger equation is used to numerically investigate the properties of fermions and bosons in 3D quantum electrodynamics QED and a series of self-consistent solutions for the fermion propagator in the Nambu and Wigner phases are obtained. These numerical solutions show that the propagator behaves very differently in the Landau gauge domain and in the infrared energy region outside it.By using the propagators in the Nambu and Wigner phases under various gauges it is further investigated how the fermion equivalent pressure difference and fermion condensation change with the gauge parameters.These results indicate that the phase transition described by the CJT equivalent potential and the chiral phase transition described by the chiral condensation are not completely identical.展开更多
Tight conglomerate reservoirs are featured with extremely low permeability,strong heterogeneity and poor water injectivity.CO_(2) huff-n-puff has been considered a promising candidate to enhance oil recovery in tight ...Tight conglomerate reservoirs are featured with extremely low permeability,strong heterogeneity and poor water injectivity.CO_(2) huff-n-puff has been considered a promising candidate to enhance oil recovery in tight reservoirs,owing to its advantages in reducing oil viscosity,improving mobility ratio,quickly replenishing formation pressure,and potentially achieving a miscible state.However,reliable inhouse laboratory evaluation of CO_(2) huff-n-puff in natural conglomerate cores is challenging due to the inherent high formation pressure.In this study,we put forward an equivalent method based on the similarity of the miscibility index and Grashof number to acquire a lab-controllable pressure that features the flow characteristics of CO_(2) injection in a tight conglomerate reservoir.The impacts of depletion degree,pore volume injection of CO_(2) and soaking time on ultimate oil recovery in tight cores from the Mahu conglomerate reservoir were successfully tested at an equivalent pressure.Our results showed that oil recovery decreased with increased depletion degree while exhibiting a non-monotonic tendency(first increased and then decreased)with increased CO_(2) injection volume and soaking time.The lower oil recoveries under excess CO_(2) injection and soaking time were attributed to limited CO_(2) dissolution and asphaltene precipitation.This work guides secure and reliable laboratory design of CO_(2) huff-n-puff in tight reservoirs with high formation pressure.展开更多
A few constitutive models for unsaturated soils have already been proposed,however,many classic models such as the Barcelona basic model can simulate neither complex volumetric soil behaviour(without forgetting its s...A few constitutive models for unsaturated soils have already been proposed,however,many classic models such as the Barcelona basic model can simulate neither complex volumetric soil behaviour(without forgetting its supreme merit of being the first consistently and rigorously formulated model) nor post-peak softening,and most advanced models generally comprise a large number of parameters making them more difficult to be applied to practical situations.In this paper,we present a new model for unsaturated soils based on an existing model developed originally for saturated soils.It comprises a minimum number of constitutive parameters.The extension to unsaturated state is achieved by following a general methodology previously developed in our laboratory.The capacities of this simple model are tested.With only 13 parameters,it can reproduce the basic behaviour of unsaturated soils such as rebound or collapse upon wetting,depending on the stress levels.It can also reproduce post-peak softening and transition from contractant to dilatant volumetric behaviour during undrained shear.Overall,the first tentative of validation gives a good correlation between simulations and experimental data,and shows encouraging signs for future developments.展开更多
Multi-coalbed developed in Carboniferous–Permian coal-bearing strata of southern Qinshui Basin, and different coal-bearing segments have different coalbed methane(CBM) reservoiring characteristics. Analysis of prev...Multi-coalbed developed in Carboniferous–Permian coal-bearing strata of southern Qinshui Basin, and different coal-bearing segments have different coalbed methane(CBM) reservoiring characteristics. Analysis of previous studies suggests that the essence of an unattached CBM system is to possess a unified fluid pressure system, which includes four key elements, namely, gas-bearing coal-rock mass, formation fluid, independent hydrodynamic system and capping layer condition. Based on the exploration and exploitation data of CBM, it is discovered that the gas content of coal seams in southern Qinshui Basin presents a change rule of non-monotonic function with the seam dipping, and a turning point of the change appears nearby coal seam No. 9, and coal seams of the upper and the lower belong to different CBM systems respectively; well test reservoir pressure shows that the gradient of coal seam No. 15 of the Taiyuan Formation is significantly higher than that of coal seam No. 3 of the Shanxi Formation; the equivalent reservoir pressure gradient of coal seam No. 15 "jumps" obviously compared with the reservoir pressure gradient of coal seam No. 3 in the same vertical well, that is, the relation between reservoir pressure and burial depth takes on a characteristic of nonlinearity; meanwhile, the vertical hydraulic connection among the aquifers of Shanxi Formation and Taiyuan Formation is weak, constituting several relatively independent fluid pressure systems. The characteristics discussed above reveal that the main coal seams of southern Qinshui Basin respectively belong to relatively independent CBM systems, the formation of which are jointly controlled by sedimentary, hydrogeological and structural conditions.展开更多
基金The National Natural Science Foundation of China(No.10947127)the Science Foundation of Southeast University(No.11047005)
文摘In order to examine how a propagator behaves in non-perturbative theories and how its behavior is influenced by the choice of a covariant gauge a truncated Dyson-Schwinger equation is used to numerically investigate the properties of fermions and bosons in 3D quantum electrodynamics QED and a series of self-consistent solutions for the fermion propagator in the Nambu and Wigner phases are obtained. These numerical solutions show that the propagator behaves very differently in the Landau gauge domain and in the infrared energy region outside it.By using the propagators in the Nambu and Wigner phases under various gauges it is further investigated how the fermion equivalent pressure difference and fermion condensation change with the gauge parameters.These results indicate that the phase transition described by the CJT equivalent potential and the chiral phase transition described by the chiral condensation are not completely identical.
基金This study is financially supported by CNPC Innovation Foundation(2020D-5007-0214)Major Strategic Project of CNPC(ZLZX2020-01-04)Beijing Municipal Excellent Talent Training Funds Youth Advanced Individual Project(2018000020124G163)。
文摘Tight conglomerate reservoirs are featured with extremely low permeability,strong heterogeneity and poor water injectivity.CO_(2) huff-n-puff has been considered a promising candidate to enhance oil recovery in tight reservoirs,owing to its advantages in reducing oil viscosity,improving mobility ratio,quickly replenishing formation pressure,and potentially achieving a miscible state.However,reliable inhouse laboratory evaluation of CO_(2) huff-n-puff in natural conglomerate cores is challenging due to the inherent high formation pressure.In this study,we put forward an equivalent method based on the similarity of the miscibility index and Grashof number to acquire a lab-controllable pressure that features the flow characteristics of CO_(2) injection in a tight conglomerate reservoir.The impacts of depletion degree,pore volume injection of CO_(2) and soaking time on ultimate oil recovery in tight cores from the Mahu conglomerate reservoir were successfully tested at an equivalent pressure.Our results showed that oil recovery decreased with increased depletion degree while exhibiting a non-monotonic tendency(first increased and then decreased)with increased CO_(2) injection volume and soaking time.The lower oil recoveries under excess CO_(2) injection and soaking time were attributed to limited CO_(2) dissolution and asphaltene precipitation.This work guides secure and reliable laboratory design of CO_(2) huff-n-puff in tight reservoirs with high formation pressure.
文摘A few constitutive models for unsaturated soils have already been proposed,however,many classic models such as the Barcelona basic model can simulate neither complex volumetric soil behaviour(without forgetting its supreme merit of being the first consistently and rigorously formulated model) nor post-peak softening,and most advanced models generally comprise a large number of parameters making them more difficult to be applied to practical situations.In this paper,we present a new model for unsaturated soils based on an existing model developed originally for saturated soils.It comprises a minimum number of constitutive parameters.The extension to unsaturated state is achieved by following a general methodology previously developed in our laboratory.The capacities of this simple model are tested.With only 13 parameters,it can reproduce the basic behaviour of unsaturated soils such as rebound or collapse upon wetting,depending on the stress levels.It can also reproduce post-peak softening and transition from contractant to dilatant volumetric behaviour during undrained shear.Overall,the first tentative of validation gives a good correlation between simulations and experimental data,and shows encouraging signs for future developments.
基金financially supported by the National Natural Science Fund of China (No. U1361207)the Coalbed Methane United Fund of Shanxi Province (No. 2012012001)the National Science and Technology Key Special Project of China (No. 2011ZX05034-04)
文摘Multi-coalbed developed in Carboniferous–Permian coal-bearing strata of southern Qinshui Basin, and different coal-bearing segments have different coalbed methane(CBM) reservoiring characteristics. Analysis of previous studies suggests that the essence of an unattached CBM system is to possess a unified fluid pressure system, which includes four key elements, namely, gas-bearing coal-rock mass, formation fluid, independent hydrodynamic system and capping layer condition. Based on the exploration and exploitation data of CBM, it is discovered that the gas content of coal seams in southern Qinshui Basin presents a change rule of non-monotonic function with the seam dipping, and a turning point of the change appears nearby coal seam No. 9, and coal seams of the upper and the lower belong to different CBM systems respectively; well test reservoir pressure shows that the gradient of coal seam No. 15 of the Taiyuan Formation is significantly higher than that of coal seam No. 3 of the Shanxi Formation; the equivalent reservoir pressure gradient of coal seam No. 15 "jumps" obviously compared with the reservoir pressure gradient of coal seam No. 3 in the same vertical well, that is, the relation between reservoir pressure and burial depth takes on a characteristic of nonlinearity; meanwhile, the vertical hydraulic connection among the aquifers of Shanxi Formation and Taiyuan Formation is weak, constituting several relatively independent fluid pressure systems. The characteristics discussed above reveal that the main coal seams of southern Qinshui Basin respectively belong to relatively independent CBM systems, the formation of which are jointly controlled by sedimentary, hydrogeological and structural conditions.