This report addresses the issues concerning the analysis of an electric circuit composed of multiple resistors configured in a 3-Dimension structure. Noting, all the standard textbooks of physics and engineering irres...This report addresses the issues concerning the analysis of an electric circuit composed of multiple resistors configured in a 3-Dimension structure. Noting, all the standard textbooks of physics and engineering irrespective of the used components are circuits assembled in two dimensions. Here, by deviating from the “norm” we consider a case where the resistors are arranged in a 3D structure;e.g., a cube. Although, independent of the dimension of the design the same physics principles apply, transitioning from a 2D to a 3D makes the corresponding analysis considerably challenging. In general, with no exception, depending on the used components the analysis faces with solving a set of either algebraic or differential-algebraic equations. Practically, this interfaces with a Computer Algebra System (CAS). The main objective is symbolically to identify the current distributions and the equivalent resistor (s) of cubically assembled resistors.展开更多
文摘This report addresses the issues concerning the analysis of an electric circuit composed of multiple resistors configured in a 3-Dimension structure. Noting, all the standard textbooks of physics and engineering irrespective of the used components are circuits assembled in two dimensions. Here, by deviating from the “norm” we consider a case where the resistors are arranged in a 3D structure;e.g., a cube. Although, independent of the dimension of the design the same physics principles apply, transitioning from a 2D to a 3D makes the corresponding analysis considerably challenging. In general, with no exception, depending on the used components the analysis faces with solving a set of either algebraic or differential-algebraic equations. Practically, this interfaces with a Computer Algebra System (CAS). The main objective is symbolically to identify the current distributions and the equivalent resistor (s) of cubically assembled resistors.