Near-fault strong ground motions that resulted in serious structural damage are characterized by directivity effect and pulse-type motion. Large-amplitude and long-period pulses are contained in the velocity time-his...Near-fault strong ground motions that resulted in serious structural damage are characterized by directivity effect and pulse-type motion. Large-amplitude and long-period pulses are contained in the velocity time-history traces of near-fault pulse-type records. A reasonable model of equivalent velocity pulse is proposed on the basis of the ex- isted models in this paper to simplify the calculation and analysis. Based on the large amount of collected near-fault strong earthquakes records, the parameters describing equivalent velocity pulse model such as pulse period, pulse intensity and number of predominant pulses are studied, and comparison is made with the results obtained by others models. The proposed model is contributive to the seismic design for structures in near-fault areas.展开更多
Recently,plasma-assisted combustion has become a potentially applicable technology in many combustion scenarios.In this paper,a dielectric barrier discharge(DBD) plasma generator is designed to explore the effect of...Recently,plasma-assisted combustion has become a potentially applicable technology in many combustion scenarios.In this paper,a dielectric barrier discharge(DBD) plasma generator is designed to explore the effect of plasma on the CH4 oxidation process,and several properties of combustion are considered.First,in the presence or absence of plasma discharge,physical appearance of the flame is examined and analyzed.Second,the flame propagation velocity is calculated by the flame front extracted from the imaging data with the Bunsen burner method.Finally,the main molecular components and their intensity variation in the flame and the plasma zones are identified with an emission spectrograph to analyze the effect of active species on the combustion process.We also discuss the possible kinetic regime of plasma-assisted combustion.Experimental results imply that plasma discharge applied to the premixed CH_4/O_2/He mixture significantly raises the flame speed with equivalence ratios ranging from 0.85 to 1.10,with the flame speed improved by 17%to 35%.It can be seen that plasma can improve methane oxidation efficiency in the premixed fuel/oxidizer,especially at a low equivalence ratio.展开更多
The two characteristics of near-fault ground motions, i.e., the forward directivity effect and permanent displacement effect, result in long period and large velocity pulse in the velocity time history and large step ...The two characteristics of near-fault ground motions, i.e., the forward directivity effect and permanent displacement effect, result in long period and large velocity pulse in the velocity time history and large step pulse in the displacement time history. Considering the two effects, a simple expression of continuous function for equivalent velocity pulse time history is presented in this paper. The equivalent pulse model, in which the pulse period, peak velocity and pulse shape are described by five parameters, is highly advantageous to fit and simulate the pulse-type velocity time history. The equivalent pulse model comprises only one low-frequency component while the high-frequency component of a pulse-type earthquake record cannot be considered. Based on 28 records of 11 earthquakes, the pulse frequency of pulse-type records is generally less than 1 Hz. Therefore the low-frequency component and high-frequency component are simulated respectively and combined them together to generate a pulse-type ground motion.展开更多
To a multibeam echo sounder system (MBES), under water sound refraction plays an important role in depth measure- ment accuracy, and errors in sound velocity profile lead to inaccuracies in the measured depth (especia...To a multibeam echo sounder system (MBES), under water sound refraction plays an important role in depth measure- ment accuracy, and errors in sound velocity profile lead to inaccuracies in the measured depth (especially for outer beams). A method is developed to estimate the sound velocity profile based on the depth measured by vertical beam. Using this depth and other pa- rameters, such as t (sound pulse propagation time), θ (beam inclination angle), etc. We can estimate a simple sound velocity profile with which the depth error has been reduced. This method has been tested with a real dataset acquired in the East China Sea.展开更多
Under the assumption of an effective point source model,this paper introduces a conception of equivalent phase velocity to describle the average propagation processes and dispersion properties of seismic waves from se...Under the assumption of an effective point source model,this paper introduces a conception of equivalent phase velocity to describle the average propagation processes and dispersion properties of seismic waves from seismic source to the site,then illuminates the relation between the phase properties of seismic motion and equivalent phase velocity and obtains a simple formula of estimating the equivalent phase velocity through the use of the phase difference spectrum of seismic motion.After the parts of strong seismic records in the western American and the SMART-1 array are used to identify the method presented by this paper in reason,the statistical relations of equivalent phase velocity are given in the above two regions.The results of the paper have demonstrated that the phase spectrum of seismic motion has its inner law as same as the amplitude spectrum does.展开更多
Particle breakage commonly occurs during processing of particulate materials,but a mechanistic model of particle impact breakage is not fully established.This article presents oblique impact breakage characteristics o...Particle breakage commonly occurs during processing of particulate materials,but a mechanistic model of particle impact breakage is not fully established.This article presents oblique impact breakage characteristics of nonspherical particles using discrete element method(DEM)simulations.Three different particle shapes,i.e.spherical,cuboidal and cylindrical,are investigated.Constituent spheres are agglomerated with bridging bonds to model the breakage characteristics under impact conditions.The effect of agglomerate shapes on the breakage pattern,damage ratio,and fragment size distribution is fully investigated.By using a newly proposed oblique impact model,unified breakage master surfaces are theoretically constructed for all the particle shapes under oblique impact conditions.The developed approach can be applied to modelling particulate processes where nonspherical particles and oblique impact breakage are prevailing.展开更多
基金National Natural Science Foundation of China (50278002).
文摘Near-fault strong ground motions that resulted in serious structural damage are characterized by directivity effect and pulse-type motion. Large-amplitude and long-period pulses are contained in the velocity time-history traces of near-fault pulse-type records. A reasonable model of equivalent velocity pulse is proposed on the basis of the ex- isted models in this paper to simplify the calculation and analysis. Based on the large amount of collected near-fault strong earthquakes records, the parameters describing equivalent velocity pulse model such as pulse period, pulse intensity and number of predominant pulses are studied, and comparison is made with the results obtained by others models. The proposed model is contributive to the seismic design for structures in near-fault areas.
基金supported by the Fundamental Research Funds for the Central Universities of China(No.xjj2013086)Natural Science Basic Research Plan in Shaanxi Province of China(No.2014JQ7254)National Natural Science Foundation of China(No.51477135)
文摘Recently,plasma-assisted combustion has become a potentially applicable technology in many combustion scenarios.In this paper,a dielectric barrier discharge(DBD) plasma generator is designed to explore the effect of plasma on the CH4 oxidation process,and several properties of combustion are considered.First,in the presence or absence of plasma discharge,physical appearance of the flame is examined and analyzed.Second,the flame propagation velocity is calculated by the flame front extracted from the imaging data with the Bunsen burner method.Finally,the main molecular components and their intensity variation in the flame and the plasma zones are identified with an emission spectrograph to analyze the effect of active species on the combustion process.We also discuss the possible kinetic regime of plasma-assisted combustion.Experimental results imply that plasma discharge applied to the premixed CH_4/O_2/He mixture significantly raises the flame speed with equivalence ratios ranging from 0.85 to 1.10,with the flame speed improved by 17%to 35%.It can be seen that plasma can improve methane oxidation efficiency in the premixed fuel/oxidizer,especially at a low equivalence ratio.
基金National Natural Science Foundation of China (50478063)
文摘The two characteristics of near-fault ground motions, i.e., the forward directivity effect and permanent displacement effect, result in long period and large velocity pulse in the velocity time history and large step pulse in the displacement time history. Considering the two effects, a simple expression of continuous function for equivalent velocity pulse time history is presented in this paper. The equivalent pulse model, in which the pulse period, peak velocity and pulse shape are described by five parameters, is highly advantageous to fit and simulate the pulse-type velocity time history. The equivalent pulse model comprises only one low-frequency component while the high-frequency component of a pulse-type earthquake record cannot be considered. Based on 28 records of 11 earthquakes, the pulse frequency of pulse-type records is generally less than 1 Hz. Therefore the low-frequency component and high-frequency component are simulated respectively and combined them together to generate a pulse-type ground motion.
基金funded by the National High Technology Research and Development Program of China('863'Program)under contract Nos.2004AA616080 and 2006AA09ZI03the National Natural Science Foundation of China(Project code:40606026).
文摘To a multibeam echo sounder system (MBES), under water sound refraction plays an important role in depth measure- ment accuracy, and errors in sound velocity profile lead to inaccuracies in the measured depth (especially for outer beams). A method is developed to estimate the sound velocity profile based on the depth measured by vertical beam. Using this depth and other pa- rameters, such as t (sound pulse propagation time), θ (beam inclination angle), etc. We can estimate a simple sound velocity profile with which the depth error has been reduced. This method has been tested with a real dataset acquired in the East China Sea.
文摘Under the assumption of an effective point source model,this paper introduces a conception of equivalent phase velocity to describle the average propagation processes and dispersion properties of seismic waves from seismic source to the site,then illuminates the relation between the phase properties of seismic motion and equivalent phase velocity and obtains a simple formula of estimating the equivalent phase velocity through the use of the phase difference spectrum of seismic motion.After the parts of strong seismic records in the western American and the SMART-1 array are used to identify the method presented by this paper in reason,the statistical relations of equivalent phase velocity are given in the above two regions.The results of the paper have demonstrated that the phase spectrum of seismic motion has its inner law as same as the amplitude spectrum does.
基金the financial support from National Natural Science Foundation of China Excellent Young Scientists Fund Program(Overseas)(grant No.YQ2023-22)Shandong Excellent YoungsScientistsFund Program(Overseas)(grant No.2022HWYQ-020)Shenzhen Science and TechnologyProgram(grant No.RCBS20200714114910354,JCYJ20220530141016036 and GJHZ20200731095006019).
文摘Particle breakage commonly occurs during processing of particulate materials,but a mechanistic model of particle impact breakage is not fully established.This article presents oblique impact breakage characteristics of nonspherical particles using discrete element method(DEM)simulations.Three different particle shapes,i.e.spherical,cuboidal and cylindrical,are investigated.Constituent spheres are agglomerated with bridging bonds to model the breakage characteristics under impact conditions.The effect of agglomerate shapes on the breakage pattern,damage ratio,and fragment size distribution is fully investigated.By using a newly proposed oblique impact model,unified breakage master surfaces are theoretically constructed for all the particle shapes under oblique impact conditions.The developed approach can be applied to modelling particulate processes where nonspherical particles and oblique impact breakage are prevailing.