When the air temperature reaches 600 K or higher, vibration is excited. The specific heat is not a constant but a function of temperature. Under this condition, the transition position of hypersonic sharp wedge bounda...When the air temperature reaches 600 K or higher, vibration is excited. The specific heat is not a constant but a function of temperature. Under this condition, the transition position of hypersonic sharp wedge boundary layer is predicted by using the improved eN method considering variable specific heat. The transition positions with different Mach numbers of oncoming flow, half wedge angles, and wall conditions are computed condition, the nearer to the Mach number The results show that for the same oncoming flow condition and wall transition positions of hypersonic sharp wedge boundary layer move much leading edge than those of the flat plate. The greater the oncoming flow the closer the transition position to the leading edge.展开更多
Single crystals of La0.67Ca0.33MnO3 and La0.67Ca0.33Mn0.96Fe0.04O3 were obtained by floating zone method. Laue diffraction pattern and rocking curve of the single crystals show that their quality is good. The magnetic...Single crystals of La0.67Ca0.33MnO3 and La0.67Ca0.33Mn0.96Fe0.04O3 were obtained by floating zone method. Laue diffraction pattern and rocking curve of the single crystals show that their quality is good. The magnetic behaviours of these compounds have been studied. Fe doping significantly depresses the magnetic contribution to the total specific heat Cp, but slightly influences the lattice contribution at temperatures above 50K. The peak of Cp shifts towards high temperatures with increasing magnetic field. Both single crystals exhibit the first-order magnetic transition around the Curie temperature.展开更多
Rayleigh-Taylor(RT)instability widely exists in nature and engineering fields.How to better understand the physical mechanism of RT instability is of great theoretical significance and practical value.At present,abund...Rayleigh-Taylor(RT)instability widely exists in nature and engineering fields.How to better understand the physical mechanism of RT instability is of great theoretical significance and practical value.At present,abundant results of RT instability have been obtained by traditional macroscopic methods.However,research on the thermodynamic non-equilibrium(TNE)effects in the process of system evolution is relatively scarce.In this paper,the discrete Boltzmann method based on non-equilibrium statistical physics is utilized to study the effects of the specific heat ratio on compressible RT instability.The evolution process of the compressible RT system with different specific heat ratios can be analyzed by the temperature gradient and the proportion of the non-equilibrium region.Firstly,as a result of the competition between the macroscopic magnitude gradient and the non-equilibrium region,the average TNE intensity first increases and then reduces,and it increases with the specific heat ratio decreasing;the specific heat ratio has the same effect on the global strength of the viscous stress tensor.Secondly,the moment when the total temperature gradient in y direction deviates from the fixed value can be regarded as a physical criterion for judging the formation of the vortex structure.Thirdly,under the competition between the temperature gradients and the contact area of the two fluids,the average intensity of the non-equilibrium quantity related to the heat flux shows diversity,and the influence of the specific heat ratio is also quite remarkable.展开更多
We present an improvement of the finite temperature Lanczos method in order to apply this method to systems at very low temperature. One proposal is to introduce two steps in this method. In the first step, we use the...We present an improvement of the finite temperature Lanczos method in order to apply this method to systems at very low temperature. One proposal is to introduce two steps in this method. In the first step, we use the Chebyshev polynomial expansion to calculate exp(-H/T1) random vector>?at moderate temperature T1. In the second step, we apply the ordinary finite temperature Lanczos method using the calculated state as the initial state of the Lanczos method. Another proposal is to employ a sampling method for selecting a random vector. By this sampling, we can improve an efficiency of calculations. Using the improved finite temperature Lanczos method, we calculate the specific heat of the spin-1/2 Heisenberg model on the kagome lattices of 27 and 30 sites.展开更多
The moment method in statistical (SMM) dynamics is used to study the thermodynamic quantities of ZrO2 thin films taking into account the anharmonicity effects of the lattice vibrations. The average lattice constant, t...The moment method in statistical (SMM) dynamics is used to study the thermodynamic quantities of ZrO2 thin films taking into account the anharmonicity effects of the lattice vibrations. The average lattice constant, thermal expansion coefficient and specific heats at the constant volume of ZrO2 thin films are calculated as a function of temperature, pressure and thickness of thin film. SMM calculations are performed using the Buckingham potential for the ZrO2 thin films. In the present study, the influence of temperature, pressure and the size on the thermodynamic quantities of ZrO2 thin film have been studied using three different interatomic potentials. We discuss temperature and thickness dependences of some thermodynamic quantities of ZrO2 thin films and we compare our calculated results with those of the experimental results.展开更多
When an aircraft flies at a hypersonic speed,the temperature of gas inner boundary layer near the wall is so high that the specific heat is no longer a constant but dependent upon the temperature.It is necessary to co...When an aircraft flies at a hypersonic speed,the temperature of gas inner boundary layer near the wall is so high that the specific heat is no longer a constant but dependent upon the temperature.It is necessary to consider its effect on transition location.In this paper,the transition locations of hypersonic plane boundary layer are predicted with the improved e N method,and the results of the specific heat dependent upon temperature are compared with those of constant specific heat.The flow parameters are taken as those corresponding to the condition at a height of 40 km and the Mach numbers of oncoming flow are 6,7,and 8,respectively.It is found that the transition locations calculated by the variable specific heat are closer to the leading edge than those by the constant specific heat.The deviations in most cases are around 30 percent.All the results prove that the real gas effect should be taken into consideration when one predicts transition location for hypersonic flow.Whether the first or second mode wave determines the transition location relies on the oncoming flow Mach number and the wall condition.展开更多
基金supported by the National Natural Science Foundation of China(Nos.11172203 and91216111)the National Basic Research Program of China(No.2009CB724103)
文摘When the air temperature reaches 600 K or higher, vibration is excited. The specific heat is not a constant but a function of temperature. Under this condition, the transition position of hypersonic sharp wedge boundary layer is predicted by using the improved eN method considering variable specific heat. The transition positions with different Mach numbers of oncoming flow, half wedge angles, and wall conditions are computed condition, the nearer to the Mach number The results show that for the same oncoming flow condition and wall transition positions of hypersonic sharp wedge boundary layer move much leading edge than those of the flat plate. The greater the oncoming flow the closer the transition position to the leading edge.
文摘Single crystals of La0.67Ca0.33MnO3 and La0.67Ca0.33Mn0.96Fe0.04O3 were obtained by floating zone method. Laue diffraction pattern and rocking curve of the single crystals show that their quality is good. The magnetic behaviours of these compounds have been studied. Fe doping significantly depresses the magnetic contribution to the total specific heat Cp, but slightly influences the lattice contribution at temperatures above 50K. The peak of Cp shifts towards high temperatures with increasing magnetic field. Both single crystals exhibit the first-order magnetic transition around the Curie temperature.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.51806116 and 11875001)the Natural Science Foundation of Fujian Province(Grant No.2018J01654).
文摘Rayleigh-Taylor(RT)instability widely exists in nature and engineering fields.How to better understand the physical mechanism of RT instability is of great theoretical significance and practical value.At present,abundant results of RT instability have been obtained by traditional macroscopic methods.However,research on the thermodynamic non-equilibrium(TNE)effects in the process of system evolution is relatively scarce.In this paper,the discrete Boltzmann method based on non-equilibrium statistical physics is utilized to study the effects of the specific heat ratio on compressible RT instability.The evolution process of the compressible RT system with different specific heat ratios can be analyzed by the temperature gradient and the proportion of the non-equilibrium region.Firstly,as a result of the competition between the macroscopic magnitude gradient and the non-equilibrium region,the average TNE intensity first increases and then reduces,and it increases with the specific heat ratio decreasing;the specific heat ratio has the same effect on the global strength of the viscous stress tensor.Secondly,the moment when the total temperature gradient in y direction deviates from the fixed value can be regarded as a physical criterion for judging the formation of the vortex structure.Thirdly,under the competition between the temperature gradients and the contact area of the two fluids,the average intensity of the non-equilibrium quantity related to the heat flux shows diversity,and the influence of the specific heat ratio is also quite remarkable.
文摘We present an improvement of the finite temperature Lanczos method in order to apply this method to systems at very low temperature. One proposal is to introduce two steps in this method. In the first step, we use the Chebyshev polynomial expansion to calculate exp(-H/T1) random vector>?at moderate temperature T1. In the second step, we apply the ordinary finite temperature Lanczos method using the calculated state as the initial state of the Lanczos method. Another proposal is to employ a sampling method for selecting a random vector. By this sampling, we can improve an efficiency of calculations. Using the improved finite temperature Lanczos method, we calculate the specific heat of the spin-1/2 Heisenberg model on the kagome lattices of 27 and 30 sites.
文摘The moment method in statistical (SMM) dynamics is used to study the thermodynamic quantities of ZrO2 thin films taking into account the anharmonicity effects of the lattice vibrations. The average lattice constant, thermal expansion coefficient and specific heats at the constant volume of ZrO2 thin films are calculated as a function of temperature, pressure and thickness of thin film. SMM calculations are performed using the Buckingham potential for the ZrO2 thin films. In the present study, the influence of temperature, pressure and the size on the thermodynamic quantities of ZrO2 thin film have been studied using three different interatomic potentials. We discuss temperature and thickness dependences of some thermodynamic quantities of ZrO2 thin films and we compare our calculated results with those of the experimental results.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10772134 and 11172203)the National Basic Research Program of China (Grant No. 2009CB724103)
文摘When an aircraft flies at a hypersonic speed,the temperature of gas inner boundary layer near the wall is so high that the specific heat is no longer a constant but dependent upon the temperature.It is necessary to consider its effect on transition location.In this paper,the transition locations of hypersonic plane boundary layer are predicted with the improved e N method,and the results of the specific heat dependent upon temperature are compared with those of constant specific heat.The flow parameters are taken as those corresponding to the condition at a height of 40 km and the Mach numbers of oncoming flow are 6,7,and 8,respectively.It is found that the transition locations calculated by the variable specific heat are closer to the leading edge than those by the constant specific heat.The deviations in most cases are around 30 percent.All the results prove that the real gas effect should be taken into consideration when one predicts transition location for hypersonic flow.Whether the first or second mode wave determines the transition location relies on the oncoming flow Mach number and the wall condition.