1. Introduction. Throughout this note, G is a finite group, M is a compact connected smooth on-dimensional manifold with or without boundary M, and G acts smoothly on M. We follow the standard notations ([B], [tD]). T...1. Introduction. Throughout this note, G is a finite group, M is a compact connected smooth on-dimensional manifold with or without boundary M, and G acts smoothly on M. We follow the standard notations ([B], [tD]). The isotropy subgroup of a point展开更多
A concrete numerical example of Z6-equivariant planar perturbed Hamiltonian polynomial vector fields of degree 5 having at least 24 limit cycles and the configurations of compound eyes are given by using the bifurcati...A concrete numerical example of Z6-equivariant planar perturbed Hamiltonian polynomial vector fields of degree 5 having at least 24 limit cycles and the configurations of compound eyes are given by using the bifurcation theory of planar dynamical systems and the method of detection functions. There is reason to conjecture that the Hilbert number H(2k + 1) ? (2k + I)2 - 1 for the perturbed Hamiltonian systems.展开更多
In this paper, we consider the Z8-equivariant planar Hamiltonian vector field of degree 7. By using the qualitative and numerical computation, we divide the parameters space into six-parameter-space. And we obtain the...In this paper, we consider the Z8-equivariant planar Hamiltonian vector field of degree 7. By using the qualitative and numerical computation, we divide the parameters space into six-parameter-space. And we obtain the results as following : 1. There are seven cases of the number of fixed point of above vector field in finite part, that is, 1,9,l7,25,4l,49, respectively. 2. The possible phase portraits of this vector field are fifty.展开更多
文摘1. Introduction. Throughout this note, G is a finite group, M is a compact connected smooth on-dimensional manifold with or without boundary M, and G acts smoothly on M. We follow the standard notations ([B], [tD]). The isotropy subgroup of a point
基金This work was supported by the Strategic Research (Grant No. 7000934) from the City University of Hong Kong.
文摘A concrete numerical example of Z6-equivariant planar perturbed Hamiltonian polynomial vector fields of degree 5 having at least 24 limit cycles and the configurations of compound eyes are given by using the bifurcation theory of planar dynamical systems and the method of detection functions. There is reason to conjecture that the Hilbert number H(2k + 1) ? (2k + I)2 - 1 for the perturbed Hamiltonian systems.
基金National Natural Science Fundation of P.R.China (10071097).
文摘In this paper, we consider the Z8-equivariant planar Hamiltonian vector field of degree 7. By using the qualitative and numerical computation, we divide the parameters space into six-parameter-space. And we obtain the results as following : 1. There are seven cases of the number of fixed point of above vector field in finite part, that is, 1,9,l7,25,4l,49, respectively. 2. The possible phase portraits of this vector field are fifty.