It is crucial to study the effect of radiation on the fiber amplifier devices. In the present paper, the Erbium-ytterbium co-doped fiber amplifier (EYDFA) has been irradiated by a neutron beam of different doses for v...It is crucial to study the effect of radiation on the fiber amplifier devices. In the present paper, the Erbium-ytterbium co-doped fiber amplifier (EYDFA) has been irradiated by a neutron beam of different doses for various exposure times from an Am-241/Be-9 neutron source. The gain and noise figure of the EYDFA have been calculated theoretically and recorded after and before the irradiation to test its performance under the effect of irradiation. In order to show the enhancement in the gain of the fiber amplifier devices, a comparison between the gain of the irradiated EYDFA and Erbium doped Fiber amplifier (EDFA) has been carried out. The calculated results by the proposed model are in good agreement with the experimental ones. It indicates that the gain of EYDFA deteriorates after being irradiated by a neutron dose. Moreover, the gain of irradiated EYDFA has been reduced to 13.8 dB at a dose of 720 Gy.展开更多
A new '(?)' type of wideband erbium-ytterbium co-doped phosphate glass waveguide amplifier integrated with medium thin film filter is proposed, Average gain about 15.5dB between 1530nm and 1570nm with gain dif...A new '(?)' type of wideband erbium-ytterbium co-doped phosphate glass waveguide amplifier integrated with medium thin film filter is proposed, Average gain about 15.5dB between 1530nm and 1570nm with gain difference of below 2 dB is obtained.展开更多
In this paper,a cladding-pumped erbium-ytterbium co-doped random fiber laser(EYRFL)operating at 1550 nm with high power laser diode(LD)is proposed and experimentally demonstrated for the first time.The laser cavity in...In this paper,a cladding-pumped erbium-ytterbium co-doped random fiber laser(EYRFL)operating at 1550 nm with high power laser diode(LD)is proposed and experimentally demonstrated for the first time.The laser cavity includes a 5-m-long erbium-ytterbium co-doped fiber that serves as the gain medium,as well as a 2-km-long single-mode fiber(SMF)to provide random distributed feedback.As a result,stable 2.14 W of 1550 nm random lasing at 9.80 W of 976 nm LD pump power and a linear output with the slope efficiency as 22.7%are generated.This simple and novel random fiber laser could provide a promising way to develop high power 1.5μm light sources.展开更多
文摘It is crucial to study the effect of radiation on the fiber amplifier devices. In the present paper, the Erbium-ytterbium co-doped fiber amplifier (EYDFA) has been irradiated by a neutron beam of different doses for various exposure times from an Am-241/Be-9 neutron source. The gain and noise figure of the EYDFA have been calculated theoretically and recorded after and before the irradiation to test its performance under the effect of irradiation. In order to show the enhancement in the gain of the fiber amplifier devices, a comparison between the gain of the irradiated EYDFA and Erbium doped Fiber amplifier (EDFA) has been carried out. The calculated results by the proposed model are in good agreement with the experimental ones. It indicates that the gain of EYDFA deteriorates after being irradiated by a neutron dose. Moreover, the gain of irradiated EYDFA has been reduced to 13.8 dB at a dose of 720 Gy.
文摘A new '(?)' type of wideband erbium-ytterbium co-doped phosphate glass waveguide amplifier integrated with medium thin film filter is proposed, Average gain about 15.5dB between 1530nm and 1570nm with gain difference of below 2 dB is obtained.
基金supported by the National Natural Science Foundation of China(Grant Nos.61635005,61205048,and 61290312)the PCSIRT project(Grant No.IRT1218)+1 种基金the 111 project(Grant No.B14039)the Sichuan Youth Science and Technology Foundation(Grant No.2016JQ0034).
文摘In this paper,a cladding-pumped erbium-ytterbium co-doped random fiber laser(EYRFL)operating at 1550 nm with high power laser diode(LD)is proposed and experimentally demonstrated for the first time.The laser cavity includes a 5-m-long erbium-ytterbium co-doped fiber that serves as the gain medium,as well as a 2-km-long single-mode fiber(SMF)to provide random distributed feedback.As a result,stable 2.14 W of 1550 nm random lasing at 9.80 W of 976 nm LD pump power and a linear output with the slope efficiency as 22.7%are generated.This simple and novel random fiber laser could provide a promising way to develop high power 1.5μm light sources.