The elbow erosion seriously jeopardizes the safe and stable operation of water–slag discharge pipeline of the coal gasification system.This work simulated water–slag elbow characteristics with various slag injection...The elbow erosion seriously jeopardizes the safe and stable operation of water–slag discharge pipeline of the coal gasification system.This work simulated water–slag elbow characteristics with various slag injection positions by simulating five simplified and representative erosion categories,including A-type horizontal-vertical elbow with an upstream flow,B-type horizontal-vertical elbow with a downstream flow,C-type vertical-horizontal elbow with an upstream flow,D-type vertical-horizontal elbow with a downstream flow and E-type horizontal-horizontal elbow.Compared with the C/D-type elbow,where particles were injected uniformly,the A-type elbow and E-type elbow were found to increase erosion rate,while the B-type elbow decreases erosion rate.An interesting discovery is that the elbow erosion rate is relatively low for small particles when particles are injected from the middle and bottom positions of the inlet section of the elbow.Based on the observation,a novel preceding rotating sheet structure was developed to regulate the particle injection position.It shows an excellent anti-erosion performance by reducing the maximum erosion rate of particles with diameters of 50,100,and 200μm by 23%,35%,and 43%,respectively.展开更多
基金the National Natural Science Foundation of China(grant No.22278332)Shaanxi Province's Key Research and Development Plan(grant No.2023-YBGY-317,2023-YBGY-175)+1 种基金Natural Science Basic Research Program of Shaanxi(grant No.2020JQ-597)Natural Science Foundation of Shaanxi Provincial Department of Education(grant No.23JK0723).
文摘The elbow erosion seriously jeopardizes the safe and stable operation of water–slag discharge pipeline of the coal gasification system.This work simulated water–slag elbow characteristics with various slag injection positions by simulating five simplified and representative erosion categories,including A-type horizontal-vertical elbow with an upstream flow,B-type horizontal-vertical elbow with a downstream flow,C-type vertical-horizontal elbow with an upstream flow,D-type vertical-horizontal elbow with a downstream flow and E-type horizontal-horizontal elbow.Compared with the C/D-type elbow,where particles were injected uniformly,the A-type elbow and E-type elbow were found to increase erosion rate,while the B-type elbow decreases erosion rate.An interesting discovery is that the elbow erosion rate is relatively low for small particles when particles are injected from the middle and bottom positions of the inlet section of the elbow.Based on the observation,a novel preceding rotating sheet structure was developed to regulate the particle injection position.It shows an excellent anti-erosion performance by reducing the maximum erosion rate of particles with diameters of 50,100,and 200μm by 23%,35%,and 43%,respectively.