Although conventional coal mine designs are conservative regarding pillar strength,local failures such as roof-falls and pillar bursts still affect mine safety and operations.Previous studies have identified that disc...Although conventional coal mine designs are conservative regarding pillar strength,local failures such as roof-falls and pillar bursts still affect mine safety and operations.Previous studies have identified that discontinuous,layered roof materials have some self-supporting capacity.This research is a preliminary step towards understanding these mechanics in coal-measure rocks.Although others have considered broad conceptual models and simplified analogs for mine roof behavior,this study presents a unique numerical model that more completely represents in-situ roof conditions.The discrete element method(DEM)is utilized to conduct a parametric analysis considering a range of in-situ stress ratios,material properties,and joint networks to determine the parameters controlling the stability of single-entries modeled in two-dimensions.Model results are compared to empirical observations of roof-support effectiveness(ARBS)in the context of the coal mine roof rating(CMRR)system.Results such as immediate roof displacement,overall stability,and statistical relationships between model parameters and outcomes are presented herein.Potential practical applications of this line of research include:(1)roof-support optimization for a range of coal-measure rocks,(2)establishment of a relationship between roof stability and pillar stress,and(3)determination of which parameters are most critical to roof stability and therefore require concentrated evaluation.展开更多
A shear impact energy model (SIEM) of erosion suitable for both dilute and dense particle flows is pro- posed based on the shear impact energy of particles in discrete element method (DEM) simulations. A number of...A shear impact energy model (SIEM) of erosion suitable for both dilute and dense particle flows is pro- posed based on the shear impact energy of particles in discrete element method (DEM) simulations. A number of DEM simulations are performed to determine the relationship between the shear impact energy predicted by the DEM model and the theoretical erosion energy. Simulation results show that nearly one-quarter of the shear impact energy will be converted to erosion during an impingement. According to the ratio of the shear impact energy to the erosion energy, it is feasible to predict erosion from the shear impact energy, which can be accumulated at each time step for each impingement during the DEM simulation. The total erosion of the target surface can be obtained by summing the volume of material removed from each impingement. The proposed erosion model is validated against experiment and results show that the SIEM combined with DEM accurately predicts abrasive erosions.展开更多
In order to improve the utilization of milling materials,save stone resources and reduce milling energy consumption,the aged Styrene-butadiene-styrene(SBS)modified asphalt was used as a binder to prepare AC-16 asphal...In order to improve the utilization of milling materials,save stone resources and reduce milling energy consumption,the aged Styrene-butadiene-styrene(SBS)modified asphalt was used as a binder to prepare AC-16 asphalt mixture to simulate old asphalt pavement materials.First,the test and discrete element simulation results of uniaxial compression tests were used to calibrate the parameters of the parallel bonding contact model between asphalt mortar and aggregates.On this basis,a microscopic model of the asphalt mixture was established to simulate the old asphalt pavement.Then,the discrete element software PFC(Particle Flow Code)was used to simulate the milling process of the old asphalt pavement.Analyzed the force of the cutting tool and the utilization rate of milling materials,and the optimal milling speed and milling depth were determined.Finally,the energy consumption in the milling process was measured.It is concluded that in the process of milling the old asphalt pavement,using a cutting angle of 42°,milling speed of 0.5 m/s and milling depth of 20 mm can reduce the wear of the cutting tool.In this case,the direct utilization rate of milling materials is 85.3%,and the rate of energy consumption reduction is 33.53%.After parameter optimization,the utilization rate of milling materials can be increased by 17.4%.展开更多
A new state-based elasto-plastic constitutive relationship along with the discrete element model is established to estimate the degradation of granular materials due to internal erosion.Four essential effects of inter...A new state-based elasto-plastic constitutive relationship along with the discrete element model is established to estimate the degradation of granular materials due to internal erosion.Four essential effects of internal erosion such as the force network damage and relaxation are proposed and then incorporated into the constitutive relationship to formulate internal erosion impacts on the mechanical behavior of granular materials.Most manifestations in the degradation of granular materials,such as reduction of peak strength and dilatancy are predicted by the modified constitutive relationship in good agreement with the discrete element method(DEM)simulation.In particular,the sudden reduction of stress for conspicuous mass erosion in a high stress state is captured by force network damage and the relaxation mechanism.It is concluded that the new modified constitutive relationship is a potential theory to describe the degradation of granular materials due to internal erosion and would be very useful,for instance,in the prediction and assessment of piping disaster risk during the flood season.展开更多
On 12th August 2015,a massive rapid long run-out rock landslide occurred in the Shanyang Vanadium Mine in Shaanxi Province,China,which claimed the lives of 65 miners.No heavy rainfalls,earthquakes,and mining blasts we...On 12th August 2015,a massive rapid long run-out rock landslide occurred in the Shanyang Vanadium Mine in Shaanxi Province,China,which claimed the lives of 65 miners.No heavy rainfalls,earthquakes,and mining blasts were recorded before the incident.Therefore,the failure mechanism and the cause of the long run-out movement are always in arguments.In this paper,we conducted a detailed field investigation,laboratory tests,block theory analysis,and numerical simulation to investigate the failure and long run-out mechanisms of the landslide.The field investigation results show that the source material of the rock landslide is a huge dolomite wedge block bedding on siliceous shale layers.Uniaxial compression tests indicate that the uniaxial compression strength of the intact dolomite is 130-140MPa and the dolomite shows a brittle failure mode.Due to the progressive downward erosion of the gully,the dolomite rock bridge at the slope toe became thinner.As the compression stress in the dolomite bridge increased to surpass its strength,the brittle failure of the bridge occurred.Then huge potential energy was released following the disintegration of the landslide,which led to the high acceleration of this rock landslide.The 3D discrete element simulation results suggest that the low intergranular friction contributes to the long run-out movement of this rock landslide.展开更多
基金sponsored by the Alpha Foundation for the Improvement of Mine Safety and Health, Inc. (Alpha Foundation)the funding provided for this project by the Alpha Foundationpartially funded by the National Institute of Occupational Health and Science (NIOSH) under Grant Number 200-2016-90154.
文摘Although conventional coal mine designs are conservative regarding pillar strength,local failures such as roof-falls and pillar bursts still affect mine safety and operations.Previous studies have identified that discontinuous,layered roof materials have some self-supporting capacity.This research is a preliminary step towards understanding these mechanics in coal-measure rocks.Although others have considered broad conceptual models and simplified analogs for mine roof behavior,this study presents a unique numerical model that more completely represents in-situ roof conditions.The discrete element method(DEM)is utilized to conduct a parametric analysis considering a range of in-situ stress ratios,material properties,and joint networks to determine the parameters controlling the stability of single-entries modeled in two-dimensions.Model results are compared to empirical observations of roof-support effectiveness(ARBS)in the context of the coal mine roof rating(CMRR)system.Results such as immediate roof displacement,overall stability,and statistical relationships between model parameters and outcomes are presented herein.Potential practical applications of this line of research include:(1)roof-support optimization for a range of coal-measure rocks,(2)establishment of a relationship between roof stability and pillar stress,and(3)determination of which parameters are most critical to roof stability and therefore require concentrated evaluation.
文摘A shear impact energy model (SIEM) of erosion suitable for both dilute and dense particle flows is pro- posed based on the shear impact energy of particles in discrete element method (DEM) simulations. A number of DEM simulations are performed to determine the relationship between the shear impact energy predicted by the DEM model and the theoretical erosion energy. Simulation results show that nearly one-quarter of the shear impact energy will be converted to erosion during an impingement. According to the ratio of the shear impact energy to the erosion energy, it is feasible to predict erosion from the shear impact energy, which can be accumulated at each time step for each impingement during the DEM simulation. The total erosion of the target surface can be obtained by summing the volume of material removed from each impingement. The proposed erosion model is validated against experiment and results show that the SIEM combined with DEM accurately predicts abrasive erosions.
文摘In order to improve the utilization of milling materials,save stone resources and reduce milling energy consumption,the aged Styrene-butadiene-styrene(SBS)modified asphalt was used as a binder to prepare AC-16 asphalt mixture to simulate old asphalt pavement materials.First,the test and discrete element simulation results of uniaxial compression tests were used to calibrate the parameters of the parallel bonding contact model between asphalt mortar and aggregates.On this basis,a microscopic model of the asphalt mixture was established to simulate the old asphalt pavement.Then,the discrete element software PFC(Particle Flow Code)was used to simulate the milling process of the old asphalt pavement.Analyzed the force of the cutting tool and the utilization rate of milling materials,and the optimal milling speed and milling depth were determined.Finally,the energy consumption in the milling process was measured.It is concluded that in the process of milling the old asphalt pavement,using a cutting angle of 42°,milling speed of 0.5 m/s and milling depth of 20 mm can reduce the wear of the cutting tool.In this case,the direct utilization rate of milling materials is 85.3%,and the rate of energy consumption reduction is 33.53%.After parameter optimization,the utilization rate of milling materials can be increased by 17.4%.
基金the financial support by National Natural Science Foundation of China(Grants 11432015 and 10932012)
文摘A new state-based elasto-plastic constitutive relationship along with the discrete element model is established to estimate the degradation of granular materials due to internal erosion.Four essential effects of internal erosion such as the force network damage and relaxation are proposed and then incorporated into the constitutive relationship to formulate internal erosion impacts on the mechanical behavior of granular materials.Most manifestations in the degradation of granular materials,such as reduction of peak strength and dilatancy are predicted by the modified constitutive relationship in good agreement with the discrete element method(DEM)simulation.In particular,the sudden reduction of stress for conspicuous mass erosion in a high stress state is captured by force network damage and the relaxation mechanism.It is concluded that the new modified constitutive relationship is a potential theory to describe the degradation of granular materials due to internal erosion and would be very useful,for instance,in the prediction and assessment of piping disaster risk during the flood season.
基金funded by the National Key R&D Program of China(2021YFE0111900)the China Postdoctoral Science Foundation(2023M730353)+1 种基金Major Program of National Natural Science Foundation of China(Grant No.42041006)Natural Science Basic Research Program of Shaanxi(Program No.2022JM-167).
文摘On 12th August 2015,a massive rapid long run-out rock landslide occurred in the Shanyang Vanadium Mine in Shaanxi Province,China,which claimed the lives of 65 miners.No heavy rainfalls,earthquakes,and mining blasts were recorded before the incident.Therefore,the failure mechanism and the cause of the long run-out movement are always in arguments.In this paper,we conducted a detailed field investigation,laboratory tests,block theory analysis,and numerical simulation to investigate the failure and long run-out mechanisms of the landslide.The field investigation results show that the source material of the rock landslide is a huge dolomite wedge block bedding on siliceous shale layers.Uniaxial compression tests indicate that the uniaxial compression strength of the intact dolomite is 130-140MPa and the dolomite shows a brittle failure mode.Due to the progressive downward erosion of the gully,the dolomite rock bridge at the slope toe became thinner.As the compression stress in the dolomite bridge increased to surpass its strength,the brittle failure of the bridge occurred.Then huge potential energy was released following the disintegration of the landslide,which led to the high acceleration of this rock landslide.The 3D discrete element simulation results suggest that the low intergranular friction contributes to the long run-out movement of this rock landslide.