Because of good oxidation resistance at high temperature and excellent mechanical properties of Ni3 Al and high hot hardness, and good oxidation resistance of chromium carbide, chromium carbide particle reinforced Ni3...Because of good oxidation resistance at high temperature and excellent mechanical properties of Ni3 Al and high hot hardness, and good oxidation resistance of chromium carbide, chromium carbide particle reinforced Ni3Al matrix composite would possess excellent wear resistance at elevated temperature. Cr3 C2-NiAl-Ni welding wire was produced by pressureless sintering process in vacuum. When the welding wire was welded on the surface of carbon steel, under the action of the physical heat of arc, NiAl reacted with nickel to form Ni3 Al and carbide particle reinforced Ni3 Al matrix composite was formed on the welding layers. Cr3 C2 was dissolved during welding and dispersed Cr7C3 was formed, which strengthened the Ni3Al matrix significantly. The CrTC3-Ni3Al interface was broadened, and a zone of interdiffusion and a new phase M23 C6 were formed, indicating that a good bond has been formed. The hardness of Cr7 C3/Ni3 Al composite at room and elevated temperatures is much higher than that of stellite alloys. In addition, CrTC3/Ni3Al composite possesses better high temperature oxidation resistance than stellite 12 alloy. So Cr7 C3/ Ni3 Al composite can become an attractive potential candidate for elevated temperature wear-resistant surface material.展开更多
The precipitation behavior of Mn-containing dispersoids in Al-Mg-Si 6082 alloys with different Mn contents(0,0.5 and 1.0 wt%)during various heat treatments(300–500℃)was investigated.The effects of dispersoids on ele...The precipitation behavior of Mn-containing dispersoids in Al-Mg-Si 6082 alloys with different Mn contents(0,0.5 and 1.0 wt%)during various heat treatments(300–500℃)was investigated.The effects of dispersoids on elevated-temperature strength and recrystallization resistance during hot-rolling and post-rolling annealing were evaluated.The results showed that the dispersoids in the Mn-containing alloys(0.5 and 1.0%)began to precipitate at 350℃and reached the optimum conditions after 2–4 h at 400℃.However,the dispersoids coarsened with increasing holding time at temperatures above450℃.After the peak precipitation treatment at 400℃for 2 h,the yield strength at 300℃increased from 28 MPa(base alloy free of Mn)to 55 MPa(alloy with 0.5%Mn)and 70 MPa(alloy with 1%Mn),respectively,demonstrating a significant dispersoid strengthening effect at elevated temperature.In addition,the dispersoids were thermally stable at 300℃for up to 1000 h holding owing to its relative high precipitation temperature(350–400℃),leading to the superior constant mechanical performance at elevated temperature during the long service life.During hot rolling and post-rolling annealing,the presence of a large amount of dispersoids results in the higher Zener drag PZcompared with base alloy and then significantly improved the recrystallization resistance.The alloy containing 0.5%Mn exhibited the highest recrystallization resistance among three experimental alloys studied during the post-rolling process,likely resulted from the lower coarsening rate of dispersoids and the lower dispersoids free zone.展开更多
基金Item Sponsored by National High Technical Research and Development Programof China (2002AA331070)
文摘Because of good oxidation resistance at high temperature and excellent mechanical properties of Ni3 Al and high hot hardness, and good oxidation resistance of chromium carbide, chromium carbide particle reinforced Ni3Al matrix composite would possess excellent wear resistance at elevated temperature. Cr3 C2-NiAl-Ni welding wire was produced by pressureless sintering process in vacuum. When the welding wire was welded on the surface of carbon steel, under the action of the physical heat of arc, NiAl reacted with nickel to form Ni3 Al and carbide particle reinforced Ni3 Al matrix composite was formed on the welding layers. Cr3 C2 was dissolved during welding and dispersed Cr7C3 was formed, which strengthened the Ni3Al matrix significantly. The CrTC3-Ni3Al interface was broadened, and a zone of interdiffusion and a new phase M23 C6 were formed, indicating that a good bond has been formed. The hardness of Cr7 C3/Ni3 Al composite at room and elevated temperatures is much higher than that of stellite alloys. In addition, CrTC3/Ni3Al composite possesses better high temperature oxidation resistance than stellite 12 alloy. So Cr7 C3/ Ni3 Al composite can become an attractive potential candidate for elevated temperature wear-resistant surface material.
基金the financial support of the Natural Sciences and Engineering Research Council of Canada(NSERC)Rio Tinto Aluminum through the NSERC Industry Research Chair in the Metallurgy of Aluminum Transformation at the University of Quebec at Chicoutimi.
文摘The precipitation behavior of Mn-containing dispersoids in Al-Mg-Si 6082 alloys with different Mn contents(0,0.5 and 1.0 wt%)during various heat treatments(300–500℃)was investigated.The effects of dispersoids on elevated-temperature strength and recrystallization resistance during hot-rolling and post-rolling annealing were evaluated.The results showed that the dispersoids in the Mn-containing alloys(0.5 and 1.0%)began to precipitate at 350℃and reached the optimum conditions after 2–4 h at 400℃.However,the dispersoids coarsened with increasing holding time at temperatures above450℃.After the peak precipitation treatment at 400℃for 2 h,the yield strength at 300℃increased from 28 MPa(base alloy free of Mn)to 55 MPa(alloy with 0.5%Mn)and 70 MPa(alloy with 1%Mn),respectively,demonstrating a significant dispersoid strengthening effect at elevated temperature.In addition,the dispersoids were thermally stable at 300℃for up to 1000 h holding owing to its relative high precipitation temperature(350–400℃),leading to the superior constant mechanical performance at elevated temperature during the long service life.During hot rolling and post-rolling annealing,the presence of a large amount of dispersoids results in the higher Zener drag PZcompared with base alloy and then significantly improved the recrystallization resistance.The alloy containing 0.5%Mn exhibited the highest recrystallization resistance among three experimental alloys studied during the post-rolling process,likely resulted from the lower coarsening rate of dispersoids and the lower dispersoids free zone.