Robot's dynamic motion error and on-line compensation based on multi-axis force sensor are dealt with.It is revealed that the reasons of the error are formed and the relations of the error are delivered.A motion equa...Robot's dynamic motion error and on-line compensation based on multi-axis force sensor are dealt with.It is revealed that the reasons of the error are formed and the relations of the error are delivered.A motion equation of robot's termination with the error is established,and then,an error matrix and an error compensation matrix of the motion equation are also defined.An on-line error's compensation method is put forward to decrease the displacement error,which is a degree of millimeter,shown by the result of simulation of PUMA562 robot.展开更多
Stringent attitude determination accuracy is required for the development of the advanced space technologies and thus the accuracy improvement of digital sun sensors is necessary.In this paper,we presented a proposal ...Stringent attitude determination accuracy is required for the development of the advanced space technologies and thus the accuracy improvement of digital sun sensors is necessary.In this paper,we presented a proposal for measurement error analysis of a digital sun sensor.A system modeling including three different error sources was built and employed for system error analysis.Numerical simulations were also conducted to study the measurement error introduced by different sources of error.Based on our model and study,the system errors from different error sources are coupled and the system calibration should be elaborately designed to realize a digital sun sensor with extra-high accuracy.展开更多
Although there are some multi-sensor methods for measuring the straightness and tilt errors of a linear slideway, they need to be further improved in some aspects, such as suppressing measurement noise and reducing pr...Although there are some multi-sensor methods for measuring the straightness and tilt errors of a linear slideway, they need to be further improved in some aspects, such as suppressing measurement noise and reducing precondition.In this paper, a new four-sensor method with an improved measurement system is proposed to on-machine separate the straightness and tilt errors of a linear slideway from the sensor outputs, considering the influences of the reference surface profile and the zero-adjustment values. The improved system is achieved by adjusting a single sensor to di erent positions. Based on the system, a system of linear equations is built by fusing the sensor outputs to cancel out the e ects of the straightness and tilt errors. Three constraints are then derived and supplemented into the linear system to make the coe cient matrix full rank. To restrain the sensitivity of the solution of the linear system to the measurement noise in the sensor outputs, the Tikhonov regularization method is utilized. After the surface profile is obtained from the solution, the straightness and tilt errors are identified from the sensor outputs. To analyze the e ects of the measurement noise and the positioning errors of the sensor and the linear slideway, a series of computer simulations are carried out. An experiment is conducted for validation, showing good consistency. The new four-sensor method with the improved measurement system provides a new way to measure the straightness and tilt errors of a linear slideway, which can guarantee favorable propagations of the residuals induced by the noise and the positioning errors.展开更多
The sensor array calibration methods tailored to uniform rectangular array(URA)in the presence of mutual coupling and sensor gain-and-phase errors were addressed.First,the mutual coupling model of the URA was studied,...The sensor array calibration methods tailored to uniform rectangular array(URA)in the presence of mutual coupling and sensor gain-and-phase errors were addressed.First,the mutual coupling model of the URA was studied,and then a set of steering vectors corresponding to distinct locations were numerically computed with the help of several time-disjoint auxiliary sources with known directions.Then,the optimization modeling with respect to the array error matrix(defined by the product of mutual coupling matrix and sensor gain-and-phase errors matrix)was constructed.Two preferable algorithms(called algorithm I and algorithm II)were developed to minimize the cost function.In algorithm I,the array error matrix was regarded as a whole parameter to be estimated,and the exact solution was available.Compared to some existing algorithms with the similar computation framework,algorithm I can make full use of the potentially linear characteristics of URA's error matrix,thus,the calibration precision was obviously enhanced.In algorithm II,the array error matrix was decomposed into two matrix parameters to be optimized.Compared to algorithm I,it can further decrease the number of unknowns and,thereby,yield better estimation accuracy.However,algorithm II was incapable of producing the closed-form solution and the iteration operation was unavoidable.Simulation results validate the excellent performances of the two novel algorithms compared to some existing calibration algorithms.展开更多
Magnetic sensor arrays are proposed to measure electric current in a non-contact way. In order to achieve higher accuracy, signal processing techniques for magnetic sensor arrays are utilized. Simulation techniques ar...Magnetic sensor arrays are proposed to measure electric current in a non-contact way. In order to achieve higher accuracy, signal processing techniques for magnetic sensor arrays are utilized. Simulation techniques are necessary to study the factors influencing the accuracy of current measurement. This paper presents a simulation method to estimate the impact of sensing area and position of sensors on the accuracy of current measurement. Several error models are built up to support computer-aided design of magnetic sensor arrays.展开更多
In order to solve the lack of relevant evaluation research on the accuracy of HMP155A humidity sensor calibration results in the past, this paper designs the corresponding experimental scheme, and obtains the correspo...In order to solve the lack of relevant evaluation research on the accuracy of HMP155A humidity sensor calibration results in the past, this paper designs the corresponding experimental scheme, and obtains the corresponding calibration results according to the experimental scheme;Then the measurement uncertainty of the indication error in the calibration results is evaluated by GUM, and the corresponding extended uncertainty </span><i><span style="font-family:Verdana;">U</span></i><sub><span style="font-family:Verdana;">95</span></sub><span style="font-family:Verdana;"> is obtained. Finally, according to the requirements of JJF1094-2016 characteristic evaluation of measuring instruments, combined with the calibration results and the actual situation of </span><i><span style="font-family:Verdana;">U</span></i><sub><span style="font-family:Verdana;">95</span></sub><span style="font-family:Verdana;">, the conformity of the indication error of calibration is determined. The result is that each calibration point of the sensor meets the requirements of conformity determination and is within the qualified range. This research effectively makes up for the blank of the previous research on the conformity determination of the indication error of the calibration results and has strong theoretical and practical significance.展开更多
由于DCS控制器中电表传感器在计量检测过程中,传统的B-MAC-DCS协议能耗和丢包率较高,无法缓解汇聚节点的漏斗效应,导致在远程抄表过程中传感器计量误差增大。提出一种机械电表接触传感器计量误差检测方法。采用小波基函数对DCS控制器中...由于DCS控制器中电表传感器在计量检测过程中,传统的B-MAC-DCS协议能耗和丢包率较高,无法缓解汇聚节点的漏斗效应,导致在远程抄表过程中传感器计量误差增大。提出一种机械电表接触传感器计量误差检测方法。采用小波基函数对DCS控制器中的接触传感器计量数据抗干扰处理,并通过动态选取阈值的方法,对经过小波变换后的数据去除噪声。使用低功耗自适应集簇分层型(low energy adaptive clustering hierarchy,LEACH)协议分簇代替传统的B-MAC协议;根据簇内监测值,引入阈值分析方法获取传感器计量指标,并将其作为判定依据进行误差检测,根据计量指标的变化情况判断是否存在计量误差。实验结果表明,所提方法可以准确且有效检测出机械电表接触传感器计量误差,解决DCS中机械电表的运行隐患问题。展开更多
基金This project is supported by National Hi-tech Research and Development Program of China(863 Program,No.2001AAA423300)Provincial Natural Science Foundation of Anhui,China(No.00043310)
文摘Robot's dynamic motion error and on-line compensation based on multi-axis force sensor are dealt with.It is revealed that the reasons of the error are formed and the relations of the error are delivered.A motion equation of robot's termination with the error is established,and then,an error matrix and an error compensation matrix of the motion equation are also defined.An on-line error's compensation method is put forward to decrease the displacement error,which is a degree of millimeter,shown by the result of simulation of PUMA562 robot.
基金the financial support by the National 863 Project ( No. 2012AA121503 )the China NSF projects ( No. 61377012 , No. 61505094 )China Postdoctoral Science Foundation funded project ( 2015M571034 )
文摘Stringent attitude determination accuracy is required for the development of the advanced space technologies and thus the accuracy improvement of digital sun sensors is necessary.In this paper,we presented a proposal for measurement error analysis of a digital sun sensor.A system modeling including three different error sources was built and employed for system error analysis.Numerical simulations were also conducted to study the measurement error introduced by different sources of error.Based on our model and study,the system errors from different error sources are coupled and the system calibration should be elaborately designed to realize a digital sun sensor with extra-high accuracy.
基金Supported by National Natural Science Foundation of China(Grant No.51435006)
文摘Although there are some multi-sensor methods for measuring the straightness and tilt errors of a linear slideway, they need to be further improved in some aspects, such as suppressing measurement noise and reducing precondition.In this paper, a new four-sensor method with an improved measurement system is proposed to on-machine separate the straightness and tilt errors of a linear slideway from the sensor outputs, considering the influences of the reference surface profile and the zero-adjustment values. The improved system is achieved by adjusting a single sensor to di erent positions. Based on the system, a system of linear equations is built by fusing the sensor outputs to cancel out the e ects of the straightness and tilt errors. Three constraints are then derived and supplemented into the linear system to make the coe cient matrix full rank. To restrain the sensitivity of the solution of the linear system to the measurement noise in the sensor outputs, the Tikhonov regularization method is utilized. After the surface profile is obtained from the solution, the straightness and tilt errors are identified from the sensor outputs. To analyze the e ects of the measurement noise and the positioning errors of the sensor and the linear slideway, a series of computer simulations are carried out. An experiment is conducted for validation, showing good consistency. The new four-sensor method with the improved measurement system provides a new way to measure the straightness and tilt errors of a linear slideway, which can guarantee favorable propagations of the residuals induced by the noise and the positioning errors.
基金Project(61201381)supported by the National Natural Science Foundation of ChinaProject(YP12JJ202057)supported by the Future Development Foundation of Zhengzhou Information Science and Technology College,China
文摘The sensor array calibration methods tailored to uniform rectangular array(URA)in the presence of mutual coupling and sensor gain-and-phase errors were addressed.First,the mutual coupling model of the URA was studied,and then a set of steering vectors corresponding to distinct locations were numerically computed with the help of several time-disjoint auxiliary sources with known directions.Then,the optimization modeling with respect to the array error matrix(defined by the product of mutual coupling matrix and sensor gain-and-phase errors matrix)was constructed.Two preferable algorithms(called algorithm I and algorithm II)were developed to minimize the cost function.In algorithm I,the array error matrix was regarded as a whole parameter to be estimated,and the exact solution was available.Compared to some existing algorithms with the similar computation framework,algorithm I can make full use of the potentially linear characteristics of URA's error matrix,thus,the calibration precision was obviously enhanced.In algorithm II,the array error matrix was decomposed into two matrix parameters to be optimized.Compared to algorithm I,it can further decrease the number of unknowns and,thereby,yield better estimation accuracy.However,algorithm II was incapable of producing the closed-form solution and the iteration operation was unavoidable.Simulation results validate the excellent performances of the two novel algorithms compared to some existing calibration algorithms.
基金Supported by National High-Tech Industry Development Project (1883)
文摘Magnetic sensor arrays are proposed to measure electric current in a non-contact way. In order to achieve higher accuracy, signal processing techniques for magnetic sensor arrays are utilized. Simulation techniques are necessary to study the factors influencing the accuracy of current measurement. This paper presents a simulation method to estimate the impact of sensing area and position of sensors on the accuracy of current measurement. Several error models are built up to support computer-aided design of magnetic sensor arrays.
基金Supported by National Basic Research Program of China (973 Program) (2010CB731800) and National Natural Science Foundation of China (60974059, 60736026, 61021063)
文摘In order to solve the lack of relevant evaluation research on the accuracy of HMP155A humidity sensor calibration results in the past, this paper designs the corresponding experimental scheme, and obtains the corresponding calibration results according to the experimental scheme;Then the measurement uncertainty of the indication error in the calibration results is evaluated by GUM, and the corresponding extended uncertainty </span><i><span style="font-family:Verdana;">U</span></i><sub><span style="font-family:Verdana;">95</span></sub><span style="font-family:Verdana;"> is obtained. Finally, according to the requirements of JJF1094-2016 characteristic evaluation of measuring instruments, combined with the calibration results and the actual situation of </span><i><span style="font-family:Verdana;">U</span></i><sub><span style="font-family:Verdana;">95</span></sub><span style="font-family:Verdana;">, the conformity of the indication error of calibration is determined. The result is that each calibration point of the sensor meets the requirements of conformity determination and is within the qualified range. This research effectively makes up for the blank of the previous research on the conformity determination of the indication error of the calibration results and has strong theoretical and practical significance.
文摘由于DCS控制器中电表传感器在计量检测过程中,传统的B-MAC-DCS协议能耗和丢包率较高,无法缓解汇聚节点的漏斗效应,导致在远程抄表过程中传感器计量误差增大。提出一种机械电表接触传感器计量误差检测方法。采用小波基函数对DCS控制器中的接触传感器计量数据抗干扰处理,并通过动态选取阈值的方法,对经过小波变换后的数据去除噪声。使用低功耗自适应集簇分层型(low energy adaptive clustering hierarchy,LEACH)协议分簇代替传统的B-MAC协议;根据簇内监测值,引入阈值分析方法获取传感器计量指标,并将其作为判定依据进行误差检测,根据计量指标的变化情况判断是否存在计量误差。实验结果表明,所提方法可以准确且有效检测出机械电表接触传感器计量误差,解决DCS中机械电表的运行隐患问题。