In south China, warm-sector rainstorms are significantly different from the traditional frontal rainstorms due to complex mechanism, which brings great challenges to their forecast. In this study, based on ensemble fo...In south China, warm-sector rainstorms are significantly different from the traditional frontal rainstorms due to complex mechanism, which brings great challenges to their forecast. In this study, based on ensemble forecasting, the high-resolution mesoscale numerical forecast model WRF was used to investigate the effect of initial errors on a warmsector rainstorm and a frontal rainstorm under the same circulation in south China, respectively. We analyzed the sensitivity of forecast errors to the initial errors and their evolution characteristics for the warm-sector and the frontal rainstorm. Additionally, the difference of the predictability was compared via adjusting the initial values of the GOOD member and the BAD member. Compared with the frontal rainstorm, the warm-sector rainstorm was more sensitive to initial error, which increased faster in the warm-sector. Furthermore, the magnitude of error in the warm-sector rainstorm was obviously larger than that of the frontal rainstorm, while the spatial scale of the error was smaller. Similarly, both types of the rainstorm were limited by practical predictability and inherent predictability, while the nonlinear increase characteristics occurred to be more distinct in the warm-sector rainstorm, resulting in the lower inherent predictability.The comparison between the warm-sector rainstorm and the frontal rainstorm revealed that the forecast field was closer to the real situation derived from more accurate initial errors, but only the increase rate in the frontal rainstorm was restrained evidently.展开更多
In this study, the predictability of the El Nino-South Oscillation(ENSO) in an operational prediction model from the perspective of initial errors is diagnosed using the seasonal hindcasts of the Beijing Climate Cente...In this study, the predictability of the El Nino-South Oscillation(ENSO) in an operational prediction model from the perspective of initial errors is diagnosed using the seasonal hindcasts of the Beijing Climate Center System Model,BCC;SM1.1(m). Forecast skills during the different ENSO phases are analyzed and it is shown that the ENSO forecasts appear to be more challenging during the developing phase, compared to the decay phase. During ENSO development, the SST prediction errors are significantly negative and cover a large area in the central and eastern tropical Pacific, thus limiting the model skill in predicting the intensity of El Nino. The large-scale SST errors, at their early stage, are generated gradually in terms of negative anomalies in the subsurface ocean temperature over the central-western equatorial Pacific,featuring an error evolutionary process similar to that of El Nino decay and the transition to the La Nina growth phase.Meanwhile, for short lead-time ENSO predictions, the initial wind errors begin to play an increasing role, particularly in linking with the subsurface heat content errors in the central-western Pacific. By comparing the multiple samples of initial fields in the model, it is clearly found that poor SST predictions of the Nino-3.4 region are largely due to contributions of the initial errors in certain specific locations in the tropical Pacific. This demonstrates that those sensitive areas for initial fields in ENSO prediction are fairly consistent in both previous ideal experiments and our operational predictions,indicating the need for targeted observations to further improve operational forecasts of ENSO.展开更多
基金National Key Research and Development Program of China(2017YFC1502000)。
文摘In south China, warm-sector rainstorms are significantly different from the traditional frontal rainstorms due to complex mechanism, which brings great challenges to their forecast. In this study, based on ensemble forecasting, the high-resolution mesoscale numerical forecast model WRF was used to investigate the effect of initial errors on a warmsector rainstorm and a frontal rainstorm under the same circulation in south China, respectively. We analyzed the sensitivity of forecast errors to the initial errors and their evolution characteristics for the warm-sector and the frontal rainstorm. Additionally, the difference of the predictability was compared via adjusting the initial values of the GOOD member and the BAD member. Compared with the frontal rainstorm, the warm-sector rainstorm was more sensitive to initial error, which increased faster in the warm-sector. Furthermore, the magnitude of error in the warm-sector rainstorm was obviously larger than that of the frontal rainstorm, while the spatial scale of the error was smaller. Similarly, both types of the rainstorm were limited by practical predictability and inherent predictability, while the nonlinear increase characteristics occurred to be more distinct in the warm-sector rainstorm, resulting in the lower inherent predictability.The comparison between the warm-sector rainstorm and the frontal rainstorm revealed that the forecast field was closer to the real situation derived from more accurate initial errors, but only the increase rate in the frontal rainstorm was restrained evidently.
基金jointly supported by the National Key Research and Development Program on Monitoring,Early WarningPrevention of Major Natural Disaster(Grant No.2018YFC1506000)the China National Science(Grant Nos.41606019,41975094,and 41706016)。
文摘In this study, the predictability of the El Nino-South Oscillation(ENSO) in an operational prediction model from the perspective of initial errors is diagnosed using the seasonal hindcasts of the Beijing Climate Center System Model,BCC;SM1.1(m). Forecast skills during the different ENSO phases are analyzed and it is shown that the ENSO forecasts appear to be more challenging during the developing phase, compared to the decay phase. During ENSO development, the SST prediction errors are significantly negative and cover a large area in the central and eastern tropical Pacific, thus limiting the model skill in predicting the intensity of El Nino. The large-scale SST errors, at their early stage, are generated gradually in terms of negative anomalies in the subsurface ocean temperature over the central-western equatorial Pacific,featuring an error evolutionary process similar to that of El Nino decay and the transition to the La Nina growth phase.Meanwhile, for short lead-time ENSO predictions, the initial wind errors begin to play an increasing role, particularly in linking with the subsurface heat content errors in the central-western Pacific. By comparing the multiple samples of initial fields in the model, it is clearly found that poor SST predictions of the Nino-3.4 region are largely due to contributions of the initial errors in certain specific locations in the tropical Pacific. This demonstrates that those sensitive areas for initial fields in ENSO prediction are fairly consistent in both previous ideal experiments and our operational predictions,indicating the need for targeted observations to further improve operational forecasts of ENSO.