This paper proposes a new method for measurement of the roll error motion of a slide table in a precision linear slide. The proposed method utilizes a pair of clinometers in the production process of a precision linea...This paper proposes a new method for measurement of the roll error motion of a slide table in a precision linear slide. The proposed method utilizes a pair of clinometers in the production process of a precision linear slide, where the roll error motion measurement will be carried out repeatedly to confirm whether the surface form errors of slide guideways in the linear slide are su ciently corrected by hand scraping process. In the proposed method, one of the clinometers is mounted on the slide table, while the other is placed on a vibration isolation table, on which the precision linear slide is mounted, so that influences of external disturbances can be cancelled. An experimental setup is built on a vibration isolation table, and some experiments are carried out to verify the feasibility of the proposed method.展开更多
Existing errors in the structure and kinematic parameters of multi-legged walking robots,the motion trajectory of robot will diverge from the ideal sports requirements in movement.Since the existing error compensation...Existing errors in the structure and kinematic parameters of multi-legged walking robots,the motion trajectory of robot will diverge from the ideal sports requirements in movement.Since the existing error compensation is usually used for control compensation of manipulator arm,the error compensation of multi-legged robots has seldom been explored.In order to reduce the kinematic error of robots,a motion error compensation method based on the feedforward for multi-legged mobile robots is proposed to improve motion precision of a mobile robot.The locus error of a robot body is measured,when robot moves along a given track.Error of driven joint variables is obtained by error calculation model in terms of the locus error of robot body.Error value is used to compensate driven joint variables and modify control model of robot,which can drive the robots following control model modified.The model of the relation between robot's locus errors and kinematic variables errors is set up to achieve the kinematic error compensation.On the basis of the inverse kinematics of a multi-legged walking robot,the relation between error of the motion trajectory and driven joint variables of robots is discussed.Moreover,the equation set is obtained,which expresses relation among error of driven joint variables,structure parameters and error of robot's locus.Take MiniQuad as an example,when the robot MiniQuad moves following beeline tread,motion error compensation is studied.The actual locus errors of the robot body are measured before and after compensation in the test.According to the test,variations of the actual coordinate value of the robot centroid in x-direction and z-direction are reduced more than one time.The kinematic errors of robot body are reduced effectively by the use of the motion error compensation method based on the feedforward.展开更多
In order to estimate the motion errors of 5-axis machine center, the double ball bar (DBB) method is adopted to realize the diagnosis procedure. The motion error sources of rotary axes in 5-axis machining center com...In order to estimate the motion errors of 5-axis machine center, the double ball bar (DBB) method is adopted to realize the diagnosis procedure. The motion error sources of rotary axes in 5-axis machining center comprise of the alignment error of rotary axes and the angular error due to various factors, e.g. the inclination of rotary axes. From sensitive viewpoints, each motion error is possible to have a particular sensitive direction in which deviation of DBB error trace arises from only some specific error sources. The model of the DBB error trace is established according to the spatial geometry theory. Accordingly, the sensitive direction of each motion error source is made clear through numerical simulation, which is used as the reference patterns for rotational error estimation. The estimation method is proposed to easily estimate the motion error sources of rotary axes in quantitative manner. To verify the proposed DBB method for rotational error estimation, the experimental tests are carried out on a 5-axis machining center M-400 (MORISEIKI). The effect of the mismatch of the DBB is also studied to guarantee the estimation accuracy. From the experimental data, it is noted that the proposed estimation method for 5-axis machining center is feasible and effective.展开更多
Parallel robots with SCARA(selective compliance assembly robot arm) motions are utilized widely in the field of high speed pick-and-place manipulation. Error modeling for these robots generally simplifies the parall...Parallel robots with SCARA(selective compliance assembly robot arm) motions are utilized widely in the field of high speed pick-and-place manipulation. Error modeling for these robots generally simplifies the parallelogram structures included by the robots as a link. As the established error model fails to reflect the error feature of the parallelogram structures, the effect of accuracy design and kinematic calibration based on the error model come to be undermined. An error modeling methodology is proposed to establish an error model of parallel robots with parallelogram structures. The error model can embody the geometric errors of all joints, including the joints of parallelogram structures. Thus it can contain more exhaustively the factors that reduce the accuracy of the robot. Based on the error model and some sensitivity indices defined in the sense of statistics, sensitivity analysis is carried out. Accordingly, some atlases are depicted to express each geometric error’s influence on the moving platform’s pose errors. From these atlases, the geometric errors that have greater impact on the accuracy of the moving platform are identified, and some sensitive areas where the pose errors of the moving platform are extremely sensitive to the geometric errors are also figured out. By taking into account the error factors which are generally neglected in all existing modeling methods, the proposed modeling method can thoroughly disclose the process of error transmission and enhance the efficacy of accuracy design and calibration.展开更多
After the Machine Tool Research Institute of Czechoslovakia (VUOSO) started to measure the rotational error motion of machine tool spindle by the end of the 1950s, great efforts have been made by various scholars in C...After the Machine Tool Research Institute of Czechoslovakia (VUOSO) started to measure the rotational error motion of machine tool spindle by the end of the 1950s, great efforts have been made by various scholars in China and in the United States, Japan, the United Kingdom, Russia, FRG, Switzerland, Belgium and India to acquire the most common method for measuring angular and radial error motion of spindle.展开更多
Harmonic suppression, non-periodic and non-closing in straightness profile error that will bring about harmonic component distortion in measurement result are analyzed. The countermeasure-a novel accurate two-probe me...Harmonic suppression, non-periodic and non-closing in straightness profile error that will bring about harmonic component distortion in measurement result are analyzed. The countermeasure-a novel accurate two-probe method in time domain is put forward to measure straight-going component motion error in machine tools based on the frequency domain 3-point method after symmetrical continuation of probes' primitive signal. Both straight-going component motion error in machine tools and the profile error in workpiece that is manufactured on this machine can be measured at the same time. The information is available to diagnose the fault origin of machine tools. The analysis result is proved to be correct by the experiment.展开更多
This paper gives an error analysis of radial motion measurement of ultra-precision spindle including nonlinearity error of capacitive displacement probes, misalignment error of probes, eccentric error of artifact ball...This paper gives an error analysis of radial motion measurement of ultra-precision spindle including nonlinearity error of capacitive displacement probes, misalignment error of probes, eccentric error of artifact ball and error induced by different error separating methods. Firstly, nonlinearity of a capacitive displacement probe targeting a spherical surface is investigated through experiment and the phenomena of fake displacement induced by lateral offset of the probe relative to an artifact ball?are?discussed. It is shown that the error motion in radial and axial direction and eccentric rotation of artifact ball will both induce lateral offset which causes a fake output of probes. Moreover, measurement error induced by angular positioning error for three famous error separating methods is detailed.展开更多
The contour error was analyzed based on CNC multi-axis motion control, the contour error model was obtained focused on beeline and different radius of curvature and common contour of curve, for a CNC biaxial motion co...The contour error was analyzed based on CNC multi-axis motion control, the contour error model was obtained focused on beeline and different radius of curvature and common contour of curve, for a CNC biaxial motion control system and the mechanism of producing contour error and the relationship between tracking error and contour error were presented. The theoretical and practical significance of modeling error and controlling error in motion control systems was carried out.展开更多
A feedforward compensation naethod of the motion errors of NC machine tools imple- mented with software is proposed , with which the motion errors can be compensated whithout changing the original computer control sys...A feedforward compensation naethod of the motion errors of NC machine tools imple- mented with software is proposed , with which the motion errors can be compensated whithout changing the original computer control systems of the NC machine tools. The experimental results show that the circular interpolation profile machining errors decrease by a factor of 2/3 after com- pensated.展开更多
基金supported by Japan Society for the Promotion and Science (JSPS)
文摘This paper proposes a new method for measurement of the roll error motion of a slide table in a precision linear slide. The proposed method utilizes a pair of clinometers in the production process of a precision linear slide, where the roll error motion measurement will be carried out repeatedly to confirm whether the surface form errors of slide guideways in the linear slide are su ciently corrected by hand scraping process. In the proposed method, one of the clinometers is mounted on the slide table, while the other is placed on a vibration isolation table, on which the precision linear slide is mounted, so that influences of external disturbances can be cancelled. An experimental setup is built on a vibration isolation table, and some experiments are carried out to verify the feasibility of the proposed method.
基金supported by National Natural Science Foundation of China (Grant Nos. 50675079,50875246)Program for Innovative Research Team (in Science and Technology) in University of Henan Province,China
文摘Existing errors in the structure and kinematic parameters of multi-legged walking robots,the motion trajectory of robot will diverge from the ideal sports requirements in movement.Since the existing error compensation is usually used for control compensation of manipulator arm,the error compensation of multi-legged robots has seldom been explored.In order to reduce the kinematic error of robots,a motion error compensation method based on the feedforward for multi-legged mobile robots is proposed to improve motion precision of a mobile robot.The locus error of a robot body is measured,when robot moves along a given track.Error of driven joint variables is obtained by error calculation model in terms of the locus error of robot body.Error value is used to compensate driven joint variables and modify control model of robot,which can drive the robots following control model modified.The model of the relation between robot's locus errors and kinematic variables errors is set up to achieve the kinematic error compensation.On the basis of the inverse kinematics of a multi-legged walking robot,the relation between error of the motion trajectory and driven joint variables of robots is discussed.Moreover,the equation set is obtained,which expresses relation among error of driven joint variables,structure parameters and error of robot's locus.Take MiniQuad as an example,when the robot MiniQuad moves following beeline tread,motion error compensation is studied.The actual locus errors of the robot body are measured before and after compensation in the test.According to the test,variations of the actual coordinate value of the robot centroid in x-direction and z-direction are reduced more than one time.The kinematic errors of robot body are reduced effectively by the use of the motion error compensation method based on the feedforward.
文摘In order to estimate the motion errors of 5-axis machine center, the double ball bar (DBB) method is adopted to realize the diagnosis procedure. The motion error sources of rotary axes in 5-axis machining center comprise of the alignment error of rotary axes and the angular error due to various factors, e.g. the inclination of rotary axes. From sensitive viewpoints, each motion error is possible to have a particular sensitive direction in which deviation of DBB error trace arises from only some specific error sources. The model of the DBB error trace is established according to the spatial geometry theory. Accordingly, the sensitive direction of each motion error source is made clear through numerical simulation, which is used as the reference patterns for rotational error estimation. The estimation method is proposed to easily estimate the motion error sources of rotary axes in quantitative manner. To verify the proposed DBB method for rotational error estimation, the experimental tests are carried out on a 5-axis machining center M-400 (MORISEIKI). The effect of the mismatch of the DBB is also studied to guarantee the estimation accuracy. From the experimental data, it is noted that the proposed estimation method for 5-axis machining center is feasible and effective.
基金Supported by National Natural Science Foundation of China(Grant No.51305222)National Key Scientific and Technological Program of China(Grant No.2013ZX04001-021)
文摘Parallel robots with SCARA(selective compliance assembly robot arm) motions are utilized widely in the field of high speed pick-and-place manipulation. Error modeling for these robots generally simplifies the parallelogram structures included by the robots as a link. As the established error model fails to reflect the error feature of the parallelogram structures, the effect of accuracy design and kinematic calibration based on the error model come to be undermined. An error modeling methodology is proposed to establish an error model of parallel robots with parallelogram structures. The error model can embody the geometric errors of all joints, including the joints of parallelogram structures. Thus it can contain more exhaustively the factors that reduce the accuracy of the robot. Based on the error model and some sensitivity indices defined in the sense of statistics, sensitivity analysis is carried out. Accordingly, some atlases are depicted to express each geometric error’s influence on the moving platform’s pose errors. From these atlases, the geometric errors that have greater impact on the accuracy of the moving platform are identified, and some sensitive areas where the pose errors of the moving platform are extremely sensitive to the geometric errors are also figured out. By taking into account the error factors which are generally neglected in all existing modeling methods, the proposed modeling method can thoroughly disclose the process of error transmission and enhance the efficacy of accuracy design and calibration.
基金Project supported by the National Natural Science Foundation of China
文摘After the Machine Tool Research Institute of Czechoslovakia (VUOSO) started to measure the rotational error motion of machine tool spindle by the end of the 1950s, great efforts have been made by various scholars in China and in the United States, Japan, the United Kingdom, Russia, FRG, Switzerland, Belgium and India to acquire the most common method for measuring angular and radial error motion of spindle.
基金National Nature Science Foundation of China.No.50075056
文摘Harmonic suppression, non-periodic and non-closing in straightness profile error that will bring about harmonic component distortion in measurement result are analyzed. The countermeasure-a novel accurate two-probe method in time domain is put forward to measure straight-going component motion error in machine tools based on the frequency domain 3-point method after symmetrical continuation of probes' primitive signal. Both straight-going component motion error in machine tools and the profile error in workpiece that is manufactured on this machine can be measured at the same time. The information is available to diagnose the fault origin of machine tools. The analysis result is proved to be correct by the experiment.
文摘This paper gives an error analysis of radial motion measurement of ultra-precision spindle including nonlinearity error of capacitive displacement probes, misalignment error of probes, eccentric error of artifact ball and error induced by different error separating methods. Firstly, nonlinearity of a capacitive displacement probe targeting a spherical surface is investigated through experiment and the phenomena of fake displacement induced by lateral offset of the probe relative to an artifact ball?are?discussed. It is shown that the error motion in radial and axial direction and eccentric rotation of artifact ball will both induce lateral offset which causes a fake output of probes. Moreover, measurement error induced by angular positioning error for three famous error separating methods is detailed.
基金supported by the Science Foundation of the Education Office of Gansu Province of Chinaunder Grant No.0914-01
文摘The contour error was analyzed based on CNC multi-axis motion control, the contour error model was obtained focused on beeline and different radius of curvature and common contour of curve, for a CNC biaxial motion control system and the mechanism of producing contour error and the relationship between tracking error and contour error were presented. The theoretical and practical significance of modeling error and controlling error in motion control systems was carried out.
文摘A feedforward compensation naethod of the motion errors of NC machine tools imple- mented with software is proposed , with which the motion errors can be compensated whithout changing the original computer control systems of the NC machine tools. The experimental results show that the circular interpolation profile machining errors decrease by a factor of 2/3 after com- pensated.
文摘为了解决扫描探针显微镜(Scanning Probe Microscope,SPM)现有校准方法复杂程度高且存在局限性的问题,提出了一种基于二维标准微尺度正交栅格的SPM校准方法,通过对扫描获取的栅格图像进行互相关/卷积(Cross-correlation/Convolution,CC)滤波,实现对栅距中心坐标的峰值检测。校准的运动几何误差包括x轴和y轴位置偏差Δ_(x)和Δ_(y)、沿x轴和y轴扫描的直线度偏差δy和δx以及两轴之间的正交性偏差γ_(xy)。根据x轴和y轴扫描像素数、扫描范围、标准栅格计量检定节距平均值、栅距平均值计算得出校准因子C_(x)和C_(y)。采用标称节距为10μm的正交栅格样板对原子力显微镜(Atomic Force Microscope,AFM)进行校准实验,结果显示C_(x)和C_(y)分别为0.925和1.050,γ_(xy)为0.015°,该台AFM的校准扩展不确定度为0.33μm(k=2.56)。研究成果对于推动SPM校准标准文件的具体实施和执行具有积极意义,并为SPM仪器研制及性能评估提供了技术参考。