Although there are some multi-sensor methods for measuring the straightness and tilt errors of a linear slideway, they need to be further improved in some aspects, such as suppressing measurement noise and reducing pr...Although there are some multi-sensor methods for measuring the straightness and tilt errors of a linear slideway, they need to be further improved in some aspects, such as suppressing measurement noise and reducing precondition.In this paper, a new four-sensor method with an improved measurement system is proposed to on-machine separate the straightness and tilt errors of a linear slideway from the sensor outputs, considering the influences of the reference surface profile and the zero-adjustment values. The improved system is achieved by adjusting a single sensor to di erent positions. Based on the system, a system of linear equations is built by fusing the sensor outputs to cancel out the e ects of the straightness and tilt errors. Three constraints are then derived and supplemented into the linear system to make the coe cient matrix full rank. To restrain the sensitivity of the solution of the linear system to the measurement noise in the sensor outputs, the Tikhonov regularization method is utilized. After the surface profile is obtained from the solution, the straightness and tilt errors are identified from the sensor outputs. To analyze the e ects of the measurement noise and the positioning errors of the sensor and the linear slideway, a series of computer simulations are carried out. An experiment is conducted for validation, showing good consistency. The new four-sensor method with the improved measurement system provides a new way to measure the straightness and tilt errors of a linear slideway, which can guarantee favorable propagations of the residuals induced by the noise and the positioning errors.展开更多
Through the analyses and researches on some related references of error separation techniques at home and abroad, this paper has built-up some mathematical models to measure and evaluate workpiece cylindricity error w...Through the analyses and researches on some related references of error separation techniques at home and abroad, this paper has built-up some mathematical models to measure and evaluate workpiece cylindricity error with multipoint method as well as unconstrained optimization methods. A few shortcomings of the technique to solve rotational error and cylindricity error are found, and some precise formulas are given. It is feasible by computer simulation tests.展开更多
在实际应用中多种类型阵列误差同时存在,针对这种情况下阵列误差方位依赖的特点,提出了一种基于流形分离技术(manifold separation technique,MST)的改进多重信号分类(multiple signal classification,MUSIC)算法,可以有效解决多种阵列...在实际应用中多种类型阵列误差同时存在,针对这种情况下阵列误差方位依赖的特点,提出了一种基于流形分离技术(manifold separation technique,MST)的改进多重信号分类(multiple signal classification,MUSIC)算法,可以有效解决多种阵列误差影响下的波达方向估计问题。利用MST获得包含阵列非理想特性的采样矩阵,从而进行精准测向;通过二维傅里叶变换求解二维空间谱,与现有MUSIC校正算法相比,减少了谱峰搜索的运算量。理论分析和仿真验证了该算法的有效性,可为实际问题的解决提供参考。展开更多
基金Supported by National Natural Science Foundation of China(Grant No.51435006)
文摘Although there are some multi-sensor methods for measuring the straightness and tilt errors of a linear slideway, they need to be further improved in some aspects, such as suppressing measurement noise and reducing precondition.In this paper, a new four-sensor method with an improved measurement system is proposed to on-machine separate the straightness and tilt errors of a linear slideway from the sensor outputs, considering the influences of the reference surface profile and the zero-adjustment values. The improved system is achieved by adjusting a single sensor to di erent positions. Based on the system, a system of linear equations is built by fusing the sensor outputs to cancel out the e ects of the straightness and tilt errors. Three constraints are then derived and supplemented into the linear system to make the coe cient matrix full rank. To restrain the sensitivity of the solution of the linear system to the measurement noise in the sensor outputs, the Tikhonov regularization method is utilized. After the surface profile is obtained from the solution, the straightness and tilt errors are identified from the sensor outputs. To analyze the e ects of the measurement noise and the positioning errors of the sensor and the linear slideway, a series of computer simulations are carried out. An experiment is conducted for validation, showing good consistency. The new four-sensor method with the improved measurement system provides a new way to measure the straightness and tilt errors of a linear slideway, which can guarantee favorable propagations of the residuals induced by the noise and the positioning errors.
文摘Through the analyses and researches on some related references of error separation techniques at home and abroad, this paper has built-up some mathematical models to measure and evaluate workpiece cylindricity error with multipoint method as well as unconstrained optimization methods. A few shortcomings of the technique to solve rotational error and cylindricity error are found, and some precise formulas are given. It is feasible by computer simulation tests.
文摘在实际应用中多种类型阵列误差同时存在,针对这种情况下阵列误差方位依赖的特点,提出了一种基于流形分离技术(manifold separation technique,MST)的改进多重信号分类(multiple signal classification,MUSIC)算法,可以有效解决多种阵列误差影响下的波达方向估计问题。利用MST获得包含阵列非理想特性的采样矩阵,从而进行精准测向;通过二维傅里叶变换求解二维空间谱,与现有MUSIC校正算法相比,减少了谱峰搜索的运算量。理论分析和仿真验证了该算法的有效性,可为实际问题的解决提供参考。