To analyze the effects on motion characteristics of mechanisms of dimensional variations, a study on random dimensional deviation generation techniques for 3D models on the basis of the present mechanical modeling sof...To analyze the effects on motion characteristics of mechanisms of dimensional variations, a study on random dimensional deviation generation techniques for 3D models on the basis of the present mechanical modeling software was carried out, which utilized the redeveloped interfaces provided by the modeling software to develop a random dimensional deviation generation system with certain probability distribution characteristics. This system has been used to perform modeling and simulation of the specific mechanical time delayed mechanism under multiple deviation varieties, simulation results indicate the dynamic characteristics of the mechanism are influenced significantly by the dimensional deviation in the tolerance distribution range, which should be emphasized in the design.展开更多
By selecting any one limb of 3-RSR parallel robot as a research object, the paper establishes a position and orienta- tion relationship matrix between the moving platform and the base by means of Denavit-Hartenberg (...By selecting any one limb of 3-RSR parallel robot as a research object, the paper establishes a position and orienta- tion relationship matrix between the moving platform and the base by means of Denavit-Hartenberg (D-H) transformation matrix. The error mapping model is derived from original error to the error of the platform by using matrix differential method. This model contains all geometric original errors of the robot. The nonlinear implicit function relation between po- sition and orientation error of the platform and the original geometric errors is simplified as a linear explicit function rela- tion. The results provide a basis for further studying error analysis and error compensation.展开更多
Error modelling and compensating technology is an effective method to improve the processing precision.The position and orientation deviation of workpiece is caused by the fixing and manufacturing errors of the fixtur...Error modelling and compensating technology is an effective method to improve the processing precision.The position and orientation deviation of workpiece is caused by the fixing and manufacturing errors of the fixture.How to reduce the position and orientation deviation of workpiece has become a technical problem of improving the processing quality of workpiece.In order to increase machining accuracy,an implementation scheme of fixture system comprehensive errors(FSCE) compensation is proposed.A FSCE parameter model is established by analyzing the influence of contact points on the position and orientation of workpiece.Meanwhile,a parameter identification method for FSCE parameter model is presented by using the 3-2-1 deterministic positioning fixture,which determines the model parameters.Moreover,a FSCE compensation model is formulated to study the compensation value of the cutting position.By using RenishawOMP60 Probe and combining vertical machining centre(SKVH850) equipment with SKY2001 Open CNC System,on-machine verification system(OMVS) is built to measure FSCE successfully.The processing error can be reduced by analyzing the cutting position of the tool with the homogeneous transformation of space coordinate system.Finally,the compensation experiment of real time errors is conducted,and the cylindricality and perpendicularity errors of hole surface are reduced by 30.77% and 28.57%,respectively.This paper provides a new way of realizing the compensation of FCSE,which can improve the machining accuracy of workpiece largely.展开更多
Parallel robots with SCARA(selective compliance assembly robot arm) motions are utilized widely in the field of high speed pick-and-place manipulation. Error modeling for these robots generally simplifies the parall...Parallel robots with SCARA(selective compliance assembly robot arm) motions are utilized widely in the field of high speed pick-and-place manipulation. Error modeling for these robots generally simplifies the parallelogram structures included by the robots as a link. As the established error model fails to reflect the error feature of the parallelogram structures, the effect of accuracy design and kinematic calibration based on the error model come to be undermined. An error modeling methodology is proposed to establish an error model of parallel robots with parallelogram structures. The error model can embody the geometric errors of all joints, including the joints of parallelogram structures. Thus it can contain more exhaustively the factors that reduce the accuracy of the robot. Based on the error model and some sensitivity indices defined in the sense of statistics, sensitivity analysis is carried out. Accordingly, some atlases are depicted to express each geometric error’s influence on the moving platform’s pose errors. From these atlases, the geometric errors that have greater impact on the accuracy of the moving platform are identified, and some sensitive areas where the pose errors of the moving platform are extremely sensitive to the geometric errors are also figured out. By taking into account the error factors which are generally neglected in all existing modeling methods, the proposed modeling method can thoroughly disclose the process of error transmission and enhance the efficacy of accuracy design and calibration.展开更多
Business processes described by formal or semi-formal models are realized via information systems.Event logs generated from these systems are probably not consistent with the existing models due to insufficient design...Business processes described by formal or semi-formal models are realized via information systems.Event logs generated from these systems are probably not consistent with the existing models due to insufficient design of the information system or the system upgrade.By comparing an existing process model with event logs,we can detect inconsistencies called deviations,verify and extend the business process model,and accordingly improve the business process.In this paper,some abnormal activities in business processes are formally defined based on Petri nets.An efficient approach to detect deviations between the process model and event logs is proposed.Then,business process models are revised when abnormal activities exist.A clinical process in a healthcare information system is used as a case study to illustrate our work.Experimental results show the effectiveness and efficiency of the proposed approach.展开更多
Aiming at the problem of low machining accu- racy and uncontrollable thermal errors of NC machine tools, spindle thermal error measurement, modeling and compensation of a two turntable five-axis machine tool are resea...Aiming at the problem of low machining accu- racy and uncontrollable thermal errors of NC machine tools, spindle thermal error measurement, modeling and compensation of a two turntable five-axis machine tool are researched. Measurement experiment of heat sources and thermal errors are carried out, and GRA(grey relational analysis) method is introduced into the selection of tem- perature variables used for thermal error modeling. In order to analyze the influence of different heat sources on spindle thermal errors, an ANN (artificial neural network) model is presented, and ABC(artificial bee colony) algorithm is introduced to train the link weights of ANN, a new ABC- NN(Artificial bee colony-based neural network) modeling method is proposed and used in the prediction of spindle thermal errors. In order to test the prediction performance of ABC-NN model, an experiment system is developed, the prediction results of LSR (least squares regression), ANN and ABC-NN are compared with the measurement results of spindle thermal errors. Experiment results show that the prediction accuracy of ABC-NN model is higher than LSR and ANN, and the residual error is smaller than 3 pm, the new modeling method is feasible. The proposed research provides instruction to compensate thermal errors and improve machining accuracy of NC machine tools.展开更多
The authors consider the moderate deviations of hydrodynamic limit for Ginzburg-Landau models. The moderate deviation principle of hydrodynamic limit for a specific Ginzburg-Landau model is obtained and an explicit fo...The authors consider the moderate deviations of hydrodynamic limit for Ginzburg-Landau models. The moderate deviation principle of hydrodynamic limit for a specific Ginzburg-Landau model is obtained and an explicit formula of the rate function is derived.展开更多
Multistation machining process is widely applied in contemporary manufacturing environment. Modeling of variation propagation in multistation machining process is one of the most important research scenarios. Due to t...Multistation machining process is widely applied in contemporary manufacturing environment. Modeling of variation propagation in multistation machining process is one of the most important research scenarios. Due to the existence of multiple variation streams, it is challenging to model and analyze variation propagation in a multi-station system. Current approaches to error modeling for multistation machining process are not explicit enough for error control and ensuring final product quality. In this paper, a mathematic model to depict the part dimensional variation of the complex multistation manufacturing process is formulated. A linear state space dimensional error propagation equation is established through kinematics analysis of the influence of locating parameter variations and locating datum variations on dimensional errors, so the dimensional error accumulation and transformation within the multistation process are quantitatively described. A systematic procedure to build the model is presented, which enhances the way to determine the variation sources in complex machining systems. A simple two-dimensional example is used to illustrate the proposed procedures. Finally, an industrial case of multistation machining part in a manufacturing shop is given to testify the validation and practicability of the method. The proposed analytical model is essential to quality control and improvement for multistation systems in machining quality forecasting and design optimization.展开更多
The thermal induced errors can account for as much as 70% of the dimensional errors on a workpiece. Accurate modeling of errors is an essential part of error compensation. Base on analyzing the existing approaches of ...The thermal induced errors can account for as much as 70% of the dimensional errors on a workpiece. Accurate modeling of errors is an essential part of error compensation. Base on analyzing the existing approaches of the thermal error modeling for machine tools, a new approach of regression orthogonal design is proposed, which combines the statistic theory with machine structures, surrounding condition, engineering judgements, and experience in modeling. A whole computation and analysis procedure is given. Therefore, the model got from this method are more robust and practical than those got from the present method that depends on the modeling data completely. At last more than 100 applications of CNC turning center with only one thermal error model are given. The cutting diameter variation reduces from more than 35 μm to about 12 μm with the orthogonal regression modeling and compensation of thermal error.展开更多
Aiming at the deficiency of the robustness of thermal error compensation models of CNC machine tools, the mechanism of improving the models' robustness is studied by regarding the Leaderway-V450 machining center as t...Aiming at the deficiency of the robustness of thermal error compensation models of CNC machine tools, the mechanism of improving the models' robustness is studied by regarding the Leaderway-V450 machining center as the object. Through the analysis of actual spindle air cutting experimental data on Leaderway-V450 machine, it is found that the temperature-sensitive points used for modeling is volatility, and this volatility directly leads to large changes on the collinear degree among modeling independent variables. Thus, the forecasting accuracy of multivariate regression model is severely affected, and the forecasting robustness becomes poor too. To overcome this effect, a modeling method of establishing thermal error models by using single temperature variable under the jamming of temperature-sensitive points' volatility is put forward. According to the actual data of thermal error measured in different seasons, it is proved that the single temperature variable model can reduce the loss of fore- casting accuracy resulted from the volatility of tempera- ture-sensitive points, especially for the prediction of cross quarter data, the improvement of forecasting accuracy is about 5 μm or more. The purpose that improving the robustness of the thermal error models is realized, which can provide a reference for selecting the modelingindependent variable in the application of thermal error compensation of CNC machine tools.展开更多
Six-axis numerical control spiral bevel gear grinder was taken as the object, multi-body system theory and Denavit-Hartenberg homogeneous transformed matrix (HTM) were utilized to establish the grinder synthesis err...Six-axis numerical control spiral bevel gear grinder was taken as the object, multi-body system theory and Denavit-Hartenberg homogeneous transformed matrix (HTM) were utilized to establish the grinder synthesis error model, and the validity of model was confirmed by the experiment. Additionally, in grinding wheel tool point coordinate system, the errors of six degrees of freedom were simulated when the grinding wheel revolving around C-axis, moving along X-axis and Y-axis. The influence of these six errors on teeth space, helix angle, pitch, teeth profile was discussed. The simulation results show that the angle error is in the range from -0.148 4 tad to -0.241 9 rad when grinding wheel moving along X, Y-axis; the translation error is in the range from 0.866 0 μm to 3.605 3μm when grinding wheel moving along X-axis. These angle and translation errors have a great influence on the helix angle, pitch, teeth thickness and tooth socket.展开更多
The interaction between the heat source location, its intensity, thermal expansion coefficient, the machine system configuration and the running environment creates complex thermal behavior of a machine tool, and also...The interaction between the heat source location, its intensity, thermal expansion coefficient, the machine system configuration and the running environment creates complex thermal behavior of a machine tool, and also makes thermal error prediction difficult. To address this issue, a novel prediction method for machine tool thermal error based on Bayesian networks (BNs) was presented. The method described causal relationships of factors inducing thermal deformation by graph theory and estimated the thermal error by Bayesian statistical techniques. Due to the effective combination of domain knowledge and sampled data, the BN method could adapt to the change of running state of machine, and obtain satisfactory prediction accuracy. Ex- periments on spindle thermal deformation were conducted to evaluate the modeling performance. Experimental results indicate that the BN method performs far better than the least squares (LS) analysis in terms of modeling estimation accuracy.展开更多
An externally generated resonant magnetic perturbation can induce complex non-ideal MHD responses in their resonant surfaces.We have studied the plasma responses using Fitzpatrick's improved two-fluid model and pr...An externally generated resonant magnetic perturbation can induce complex non-ideal MHD responses in their resonant surfaces.We have studied the plasma responses using Fitzpatrick's improved two-fluid model and program LAYER.We calculated the error field penetration threshold for J-TEXT.In addition,we find that the island width increases slightly as the error field amplitude increases when the error field amplitude is below the critical penetration value.However,the island width suddenly jumps to a large value because the shielding effect of the plasma against the error field disappears after the penetration.By scanning the natural mode frequency,we find that the shielding effect of the plasma decreases as the natural mode frequency decreases.Finally,we obtain the m/n=2/1 penetration threshold scaling on density and temperature.展开更多
Numerical weather prediction(NWP)models have always presented large forecasting errors of surface wind speeds over regions with complex terrain.In this study,surface wind forecasts from an operational NWP model,the SM...Numerical weather prediction(NWP)models have always presented large forecasting errors of surface wind speeds over regions with complex terrain.In this study,surface wind forecasts from an operational NWP model,the SMS-WARR(Shanghai Meteorological Service-WRF ADAS Rapid Refresh System),are analyzed to quantitatively reveal the relationships between the forecasted surface wind speed errors and terrain features,with the intent of providing clues to better apply the NWP model to complex terrain regions.The terrain features are described by three parameters:the standard deviation of the model grid-scale orography,terrain height error of the model,and slope angle.The results show that the forecast bias has a unimodal distribution with a change in the standard deviation of orography.The minimum ME(the mean value of bias)is 1.2 m s^(-1) when the standard deviation is between 60 and 70 m.A positive correlation exists between bias and terrain height error,with the ME increasing by 10%−30%for every 200 m increase in terrain height error.The ME decreases by 65.6%when slope angle increases from(0.5°−1.5°)to larger than 3.5°for uphill winds but increases by 35.4%when the absolute value of slope angle increases from(0.5°−1.5°)to(2.5°−3.5°)for downhill winds.Several sensitivity experiments are carried out with a model output statistical(MOS)calibration model for surface wind speeds and ME(RMSE)has been reduced by 90%(30%)by introducing terrain parameters,demonstrating the value of this study.展开更多
This paper is a further investigation into the large deviations for random sums of heavy-tailed,we extended and improved some results in ref. [1] and [2]. These results can applied to some questions in Insurance and F...This paper is a further investigation into the large deviations for random sums of heavy-tailed,we extended and improved some results in ref. [1] and [2]. These results can applied to some questions in Insurance and Finance.展开更多
Consider a multidimensional renewal risk model, in which the claim sizes {Xk, k ≥1} form a sequence of independent and identically distributed random vectors with nonnegative components that are allowed to be depende...Consider a multidimensional renewal risk model, in which the claim sizes {Xk, k ≥1} form a sequence of independent and identically distributed random vectors with nonnegative components that are allowed to be dependent on each other. The univariate marginal distributions of these vectors have consistently varying tails and finite means. Suppose that the claim sizes and inter-arrival times correspondingly form a sequence of independent and identically distributed random pairs, with each pair obeying a dependence structure. A precise large deviation for the multidimensional renewal risk model is obtained.展开更多
In order to improve the process precision of an XY laser annealing table, a geometric error modeling, and an identification and compensation method were proposed. Based on multi-body system theory, a geometric error m...In order to improve the process precision of an XY laser annealing table, a geometric error modeling, and an identification and compensation method were proposed. Based on multi-body system theory, a geometric error model for the laser annealing table was established. It supports the identification of 7 geometric errors affecting the annealing accuracy. An original identification method was presented to recognize these geometric errors. Positioning errors of 5 lines in the workspace were measured by a laser interferometer, and the 7 geometric errors were identified by the proposed algorithm. Finally, a software-based error compensation method was adopted, and a compensation mechanism was developed in a postprocessor based on LabVIEW. The identified geometric errors can be compensated by converting ideal NC codes to actual NC codes. A validation experiment has been conducted on the laser annealing table, and the results indicate that positioning errors of two validation lines decreased from ±37 μm and ±33 μm to ±5 μm and ±4.5 μm, respectively. The geometric error modeling, identification and compensation method presented in this work can be straightforwardly extended to any configurations of 2-dimensional worktable.展开更多
Measuring accuracy of inclinometer based on accelerometer is mainly influenced by the adopted accelerometer sensor.To improve the measuring accuracy of the inclinometer,the structure of the measuring system is given a...Measuring accuracy of inclinometer based on accelerometer is mainly influenced by the adopted accelerometer sensor.To improve the measuring accuracy of the inclinometer,the structure of the measuring system is given and measuring principle is analyzed,and the error model is established in this paper.Furthermore,the model is verified by simulation and experiment,which not only gives the smallest errors of the measured pitch and roll,but also lays foundation for sensor selection,error analysis and error compensation.The results show that the error model is of practical value.展开更多
Because of various error factors,the detecting errors in the real-time experimental data of the wear depth affect the accuracy of the detecting data.The self-made spherical plain bearing tester was studied,and its tes...Because of various error factors,the detecting errors in the real-time experimental data of the wear depth affect the accuracy of the detecting data.The self-made spherical plain bearing tester was studied,and its testing principle of the wear depth of the spherical plain bearing was introduced.Meanwhile,the error factors affecting the wear-depth detecting precision were analyzed.Then,the comprehensive error model of the wear-depth detecting system of the spherical plain bearing was built by the multi-body system theory(MBS).In addition,the thermal deformation of the wear-depth detecting system caused by varying the environmental temperature was detected.Finally,according to the above experimental parameters,the thermal errors of the related parts of the comprehensive error model were calculated by FEM.The results show that the difference between the simulation value and the experimental value is less than 0.005 mm,and the two values are close.The correctness of the comprehensive error model is verified under the thermal error experimental conditions.展开更多
Stringent attitude determination accuracy is required for the development of the advanced space technologies and thus the accuracy improvement of digital sun sensors is necessary.In this paper,we presented a proposal ...Stringent attitude determination accuracy is required for the development of the advanced space technologies and thus the accuracy improvement of digital sun sensors is necessary.In this paper,we presented a proposal for measurement error analysis of a digital sun sensor.A system modeling including three different error sources was built and employed for system error analysis.Numerical simulations were also conducted to study the measurement error introduced by different sources of error.Based on our model and study,the system errors from different error sources are coupled and the system calibration should be elaborately designed to realize a digital sun sensor with extra-high accuracy.展开更多
基金Sponsored by the Ministerial Level Advanced Research Foundation (9153C9387029389C775)
文摘To analyze the effects on motion characteristics of mechanisms of dimensional variations, a study on random dimensional deviation generation techniques for 3D models on the basis of the present mechanical modeling software was carried out, which utilized the redeveloped interfaces provided by the modeling software to develop a random dimensional deviation generation system with certain probability distribution characteristics. This system has been used to perform modeling and simulation of the specific mechanical time delayed mechanism under multiple deviation varieties, simulation results indicate the dynamic characteristics of the mechanism are influenced significantly by the dimensional deviation in the tolerance distribution range, which should be emphasized in the design.
基金National Natural Science Foundation of China(No.51275486)the Specialized Research Fund for the Doctoral Program of Higher Education(No.20111420110005)
文摘By selecting any one limb of 3-RSR parallel robot as a research object, the paper establishes a position and orienta- tion relationship matrix between the moving platform and the base by means of Denavit-Hartenberg (D-H) transformation matrix. The error mapping model is derived from original error to the error of the platform by using matrix differential method. This model contains all geometric original errors of the robot. The nonlinear implicit function relation between po- sition and orientation error of the platform and the original geometric errors is simplified as a linear explicit function rela- tion. The results provide a basis for further studying error analysis and error compensation.
基金supported by National Natural Science Foundation of China (Grant No. 50975200)National Key Technologies R & D Programmer of China (Grant No. 2009ZX04014-021)
文摘Error modelling and compensating technology is an effective method to improve the processing precision.The position and orientation deviation of workpiece is caused by the fixing and manufacturing errors of the fixture.How to reduce the position and orientation deviation of workpiece has become a technical problem of improving the processing quality of workpiece.In order to increase machining accuracy,an implementation scheme of fixture system comprehensive errors(FSCE) compensation is proposed.A FSCE parameter model is established by analyzing the influence of contact points on the position and orientation of workpiece.Meanwhile,a parameter identification method for FSCE parameter model is presented by using the 3-2-1 deterministic positioning fixture,which determines the model parameters.Moreover,a FSCE compensation model is formulated to study the compensation value of the cutting position.By using RenishawOMP60 Probe and combining vertical machining centre(SKVH850) equipment with SKY2001 Open CNC System,on-machine verification system(OMVS) is built to measure FSCE successfully.The processing error can be reduced by analyzing the cutting position of the tool with the homogeneous transformation of space coordinate system.Finally,the compensation experiment of real time errors is conducted,and the cylindricality and perpendicularity errors of hole surface are reduced by 30.77% and 28.57%,respectively.This paper provides a new way of realizing the compensation of FCSE,which can improve the machining accuracy of workpiece largely.
基金Supported by National Natural Science Foundation of China(Grant No.51305222)National Key Scientific and Technological Program of China(Grant No.2013ZX04001-021)
文摘Parallel robots with SCARA(selective compliance assembly robot arm) motions are utilized widely in the field of high speed pick-and-place manipulation. Error modeling for these robots generally simplifies the parallelogram structures included by the robots as a link. As the established error model fails to reflect the error feature of the parallelogram structures, the effect of accuracy design and kinematic calibration based on the error model come to be undermined. An error modeling methodology is proposed to establish an error model of parallel robots with parallelogram structures. The error model can embody the geometric errors of all joints, including the joints of parallelogram structures. Thus it can contain more exhaustively the factors that reduce the accuracy of the robot. Based on the error model and some sensitivity indices defined in the sense of statistics, sensitivity analysis is carried out. Accordingly, some atlases are depicted to express each geometric error’s influence on the moving platform’s pose errors. From these atlases, the geometric errors that have greater impact on the accuracy of the moving platform are identified, and some sensitive areas where the pose errors of the moving platform are extremely sensitive to the geometric errors are also figured out. By taking into account the error factors which are generally neglected in all existing modeling methods, the proposed modeling method can thoroughly disclose the process of error transmission and enhance the efficacy of accuracy design and calibration.
基金supported by the National Natural Science Foundation of China(61170078,61472228,61903229,61902222)the “Taishan Scholar” Construction Project of Shandong Province,China,the Natural Science Foundation of Shandong Province(ZR2018MF001)+1 种基金the Scientific Research Foundation of Shandong University of Science and Technology for Recruited Talents(2017RCJJ044)the Key Research and Development Program of Shandong Province(2018GGX101011)
文摘Business processes described by formal or semi-formal models are realized via information systems.Event logs generated from these systems are probably not consistent with the existing models due to insufficient design of the information system or the system upgrade.By comparing an existing process model with event logs,we can detect inconsistencies called deviations,verify and extend the business process model,and accordingly improve the business process.In this paper,some abnormal activities in business processes are formally defined based on Petri nets.An efficient approach to detect deviations between the process model and event logs is proposed.Then,business process models are revised when abnormal activities exist.A clinical process in a healthcare information system is used as a case study to illustrate our work.Experimental results show the effectiveness and efficiency of the proposed approach.
基金Supported by National Natural Science Foundation of China(Grant No.51305244)Shandong Provincal Natural Science Foundation of China(Grant No.ZR2013EEL015)
文摘Aiming at the problem of low machining accu- racy and uncontrollable thermal errors of NC machine tools, spindle thermal error measurement, modeling and compensation of a two turntable five-axis machine tool are researched. Measurement experiment of heat sources and thermal errors are carried out, and GRA(grey relational analysis) method is introduced into the selection of tem- perature variables used for thermal error modeling. In order to analyze the influence of different heat sources on spindle thermal errors, an ANN (artificial neural network) model is presented, and ABC(artificial bee colony) algorithm is introduced to train the link weights of ANN, a new ABC- NN(Artificial bee colony-based neural network) modeling method is proposed and used in the prediction of spindle thermal errors. In order to test the prediction performance of ABC-NN model, an experiment system is developed, the prediction results of LSR (least squares regression), ANN and ABC-NN are compared with the measurement results of spindle thermal errors. Experiment results show that the prediction accuracy of ABC-NN model is higher than LSR and ANN, and the residual error is smaller than 3 pm, the new modeling method is feasible. The proposed research provides instruction to compensate thermal errors and improve machining accuracy of NC machine tools.
基金Supported by the National Natural Science Foundation of China (10271091)
文摘The authors consider the moderate deviations of hydrodynamic limit for Ginzburg-Landau models. The moderate deviation principle of hydrodynamic limit for a specific Ginzburg-Landau model is obtained and an explicit formula of the rate function is derived.
基金supported by National Department Fundamental Research Foundation of China (Grant No. B222090014)National Department Technology Fundatmental Foundaiton of China (Grant No. C172009C001)
文摘Multistation machining process is widely applied in contemporary manufacturing environment. Modeling of variation propagation in multistation machining process is one of the most important research scenarios. Due to the existence of multiple variation streams, it is challenging to model and analyze variation propagation in a multi-station system. Current approaches to error modeling for multistation machining process are not explicit enough for error control and ensuring final product quality. In this paper, a mathematic model to depict the part dimensional variation of the complex multistation manufacturing process is formulated. A linear state space dimensional error propagation equation is established through kinematics analysis of the influence of locating parameter variations and locating datum variations on dimensional errors, so the dimensional error accumulation and transformation within the multistation process are quantitatively described. A systematic procedure to build the model is presented, which enhances the way to determine the variation sources in complex machining systems. A simple two-dimensional example is used to illustrate the proposed procedures. Finally, an industrial case of multistation machining part in a manufacturing shop is given to testify the validation and practicability of the method. The proposed analytical model is essential to quality control and improvement for multistation systems in machining quality forecasting and design optimization.
文摘The thermal induced errors can account for as much as 70% of the dimensional errors on a workpiece. Accurate modeling of errors is an essential part of error compensation. Base on analyzing the existing approaches of the thermal error modeling for machine tools, a new approach of regression orthogonal design is proposed, which combines the statistic theory with machine structures, surrounding condition, engineering judgements, and experience in modeling. A whole computation and analysis procedure is given. Therefore, the model got from this method are more robust and practical than those got from the present method that depends on the modeling data completely. At last more than 100 applications of CNC turning center with only one thermal error model are given. The cutting diameter variation reduces from more than 35 μm to about 12 μm with the orthogonal regression modeling and compensation of thermal error.
基金Supported by Key Project of National Natural Science Fund of China(Grant No.51490660/51490661)National Natural Science Foundation of China(Grant No.51175142)
文摘Aiming at the deficiency of the robustness of thermal error compensation models of CNC machine tools, the mechanism of improving the models' robustness is studied by regarding the Leaderway-V450 machining center as the object. Through the analysis of actual spindle air cutting experimental data on Leaderway-V450 machine, it is found that the temperature-sensitive points used for modeling is volatility, and this volatility directly leads to large changes on the collinear degree among modeling independent variables. Thus, the forecasting accuracy of multivariate regression model is severely affected, and the forecasting robustness becomes poor too. To overcome this effect, a modeling method of establishing thermal error models by using single temperature variable under the jamming of temperature-sensitive points' volatility is put forward. According to the actual data of thermal error measured in different seasons, it is proved that the single temperature variable model can reduce the loss of fore- casting accuracy resulted from the volatility of tempera- ture-sensitive points, especially for the prediction of cross quarter data, the improvement of forecasting accuracy is about 5 μm or more. The purpose that improving the robustness of the thermal error models is realized, which can provide a reference for selecting the modelingindependent variable in the application of thermal error compensation of CNC machine tools.
基金Project(2005CB724104) supported by the Major State Basic Research Development Program of ChinaProject(1343-77202) supported by the Graduate Students Innovate of Central South University
文摘Six-axis numerical control spiral bevel gear grinder was taken as the object, multi-body system theory and Denavit-Hartenberg homogeneous transformed matrix (HTM) were utilized to establish the grinder synthesis error model, and the validity of model was confirmed by the experiment. Additionally, in grinding wheel tool point coordinate system, the errors of six degrees of freedom were simulated when the grinding wheel revolving around C-axis, moving along X-axis and Y-axis. The influence of these six errors on teeth space, helix angle, pitch, teeth profile was discussed. The simulation results show that the angle error is in the range from -0.148 4 tad to -0.241 9 rad when grinding wheel moving along X, Y-axis; the translation error is in the range from 0.866 0 μm to 3.605 3μm when grinding wheel moving along X-axis. These angle and translation errors have a great influence on the helix angle, pitch, teeth thickness and tooth socket.
基金Project supported by National Natural Science Foundation of China(No. 50675199)the Science and Technology Project of Zhejiang Province (No. 2006C11067), China
文摘The interaction between the heat source location, its intensity, thermal expansion coefficient, the machine system configuration and the running environment creates complex thermal behavior of a machine tool, and also makes thermal error prediction difficult. To address this issue, a novel prediction method for machine tool thermal error based on Bayesian networks (BNs) was presented. The method described causal relationships of factors inducing thermal deformation by graph theory and estimated the thermal error by Bayesian statistical techniques. Due to the effective combination of domain knowledge and sampled data, the BN method could adapt to the change of running state of machine, and obtain satisfactory prediction accuracy. Ex- periments on spindle thermal deformation were conducted to evaluate the modeling performance. Experimental results indicate that the BN method performs far better than the least squares (LS) analysis in terms of modeling estimation accuracy.
基金Project supported by the National Natural Science Foundation of China (Grant No.51821005)。
文摘An externally generated resonant magnetic perturbation can induce complex non-ideal MHD responses in their resonant surfaces.We have studied the plasma responses using Fitzpatrick's improved two-fluid model and program LAYER.We calculated the error field penetration threshold for J-TEXT.In addition,we find that the island width increases slightly as the error field amplitude increases when the error field amplitude is below the critical penetration value.However,the island width suddenly jumps to a large value because the shielding effect of the plasma against the error field disappears after the penetration.By scanning the natural mode frequency,we find that the shielding effect of the plasma decreases as the natural mode frequency decreases.Finally,we obtain the m/n=2/1 penetration threshold scaling on density and temperature.
基金supported by the National Natural Science Foundation of China(No.U2142206).
文摘Numerical weather prediction(NWP)models have always presented large forecasting errors of surface wind speeds over regions with complex terrain.In this study,surface wind forecasts from an operational NWP model,the SMS-WARR(Shanghai Meteorological Service-WRF ADAS Rapid Refresh System),are analyzed to quantitatively reveal the relationships between the forecasted surface wind speed errors and terrain features,with the intent of providing clues to better apply the NWP model to complex terrain regions.The terrain features are described by three parameters:the standard deviation of the model grid-scale orography,terrain height error of the model,and slope angle.The results show that the forecast bias has a unimodal distribution with a change in the standard deviation of orography.The minimum ME(the mean value of bias)is 1.2 m s^(-1) when the standard deviation is between 60 and 70 m.A positive correlation exists between bias and terrain height error,with the ME increasing by 10%−30%for every 200 m increase in terrain height error.The ME decreases by 65.6%when slope angle increases from(0.5°−1.5°)to larger than 3.5°for uphill winds but increases by 35.4%when the absolute value of slope angle increases from(0.5°−1.5°)to(2.5°−3.5°)for downhill winds.Several sensitivity experiments are carried out with a model output statistical(MOS)calibration model for surface wind speeds and ME(RMSE)has been reduced by 90%(30%)by introducing terrain parameters,demonstrating the value of this study.
基金Supported by the Natural Science Foundation of the Education Department of Anhui Province(0505101)
文摘This paper is a further investigation into the large deviations for random sums of heavy-tailed,we extended and improved some results in ref. [1] and [2]. These results can applied to some questions in Insurance and Finance.
基金Supported by the National Natural Science Foundation of China(Nos.11571058&11301481)Humanities and Social Science Foundation of the Ministry of Education of China(No.17YJC910007)+1 种基金Zhejiang Provincial Natural Science Foundation of China(No.LY17A010004)Fundamental Research Funds for the Central Universities(No.DUT17LK31)
文摘Consider a multidimensional renewal risk model, in which the claim sizes {Xk, k ≥1} form a sequence of independent and identically distributed random vectors with nonnegative components that are allowed to be dependent on each other. The univariate marginal distributions of these vectors have consistently varying tails and finite means. Suppose that the claim sizes and inter-arrival times correspondingly form a sequence of independent and identically distributed random pairs, with each pair obeying a dependence structure. A precise large deviation for the multidimensional renewal risk model is obtained.
基金Projects(2012ZX04010-011,2009ZX02037-02) supported by the Key National Science and Technology Project of China
文摘In order to improve the process precision of an XY laser annealing table, a geometric error modeling, and an identification and compensation method were proposed. Based on multi-body system theory, a geometric error model for the laser annealing table was established. It supports the identification of 7 geometric errors affecting the annealing accuracy. An original identification method was presented to recognize these geometric errors. Positioning errors of 5 lines in the workspace were measured by a laser interferometer, and the 7 geometric errors were identified by the proposed algorithm. Finally, a software-based error compensation method was adopted, and a compensation mechanism was developed in a postprocessor based on LabVIEW. The identified geometric errors can be compensated by converting ideal NC codes to actual NC codes. A validation experiment has been conducted on the laser annealing table, and the results indicate that positioning errors of two validation lines decreased from ±37 μm and ±33 μm to ±5 μm and ±4.5 μm, respectively. The geometric error modeling, identification and compensation method presented in this work can be straightforwardly extended to any configurations of 2-dimensional worktable.
文摘Measuring accuracy of inclinometer based on accelerometer is mainly influenced by the adopted accelerometer sensor.To improve the measuring accuracy of the inclinometer,the structure of the measuring system is given and measuring principle is analyzed,and the error model is established in this paper.Furthermore,the model is verified by simulation and experiment,which not only gives the smallest errors of the measured pitch and roll,but also lays foundation for sensor selection,error analysis and error compensation.The results show that the error model is of practical value.
基金Project(2014E00468R)supported by Technological Innovation Fund of Aviation Industry Corporation of China
文摘Because of various error factors,the detecting errors in the real-time experimental data of the wear depth affect the accuracy of the detecting data.The self-made spherical plain bearing tester was studied,and its testing principle of the wear depth of the spherical plain bearing was introduced.Meanwhile,the error factors affecting the wear-depth detecting precision were analyzed.Then,the comprehensive error model of the wear-depth detecting system of the spherical plain bearing was built by the multi-body system theory(MBS).In addition,the thermal deformation of the wear-depth detecting system caused by varying the environmental temperature was detected.Finally,according to the above experimental parameters,the thermal errors of the related parts of the comprehensive error model were calculated by FEM.The results show that the difference between the simulation value and the experimental value is less than 0.005 mm,and the two values are close.The correctness of the comprehensive error model is verified under the thermal error experimental conditions.
基金the financial support by the National 863 Project ( No. 2012AA121503 )the China NSF projects ( No. 61377012 , No. 61505094 )China Postdoctoral Science Foundation funded project ( 2015M571034 )
文摘Stringent attitude determination accuracy is required for the development of the advanced space technologies and thus the accuracy improvement of digital sun sensors is necessary.In this paper,we presented a proposal for measurement error analysis of a digital sun sensor.A system modeling including three different error sources was built and employed for system error analysis.Numerical simulations were also conducted to study the measurement error introduced by different sources of error.Based on our model and study,the system errors from different error sources are coupled and the system calibration should be elaborately designed to realize a digital sun sensor with extra-high accuracy.